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Abstract 

 
The accurate segmentation of infant brain MR image into white matter (WM), gray matter 
(GM), and cerebrospinal fluid (CSF) is very important for early studying of brain growing 
patterns and morphological changes in neurodevelopmental disorders. Because of inherent 
myelination and maturation process, the WM and GM of babies (between 6 and 9 months of 
age) exhibit similar intensity levels in both T1-weighted (T1w) and T2-weighted (T2w) MR 
images in the isointense phase, which makes brain tissue segmentation very difficult. We 
propose a deep network architecture based on U-Net, called Triple Residual Multiscale Fully 
Convolutional Network (TRMFCN), whose structure exists three gates of input and inserts 
two blocks: residual multiscale block and concatenate block. We solved some difficulties and 
completed the segmentation task with the model. Our model outperforms the U-Net and some 
cutting-edge deep networks based on U-Net in evaluation of WM, GM and CSF. The data set 
we used for training and testing comes from iSeg-2017 challenge 
(http://iseg2017.web.unc.edu). 
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1. Introduction 

Image segmentation is an important preprocessing of image recognition and computer vision. 
During the development of medical imaging technology, image segmentation is of great 
significance in medical applications. So far, many methods are applied to medical images 
analysis, including some traditional methods based on statistical analysis and partial 
differential equations. Furthermore, with the appearance of CNN, many segmentation 
methods based on deep learning are increasingly proposed and gradually replaced the 
traditional algorithms into the mainstream. The emergence of U-Net opened up the regulation 
of convolutional neural network to segment biomedical images. 

U-Net is a segmentation network proposed by Ronneberger et al., “in the ISBI Challenge [1] 
which is inspired by the FCN [2]. Fig. 1 shows the overall structure. The neural network is 
mainly composed of two components: a contracted path and an extended path. The contracted 
path is mainly used to capture the context information of the image. The input via two 3×3 
convolution layers and a maxpooling layer, whose process is repeated four times and feature 
maps are reduced to 1⁄64. The extended path precisely locates the part to be segmented in the 
image. The result of the contracted path via a deconvolution layer to expand the size and two  
3×3 convolution layers, whose process is repeated four times to make feature maps restored to 
the original size. Skip connection is also used in the network to transfer the shallow feature 
maps to the upper layer symmetrically, making better use of the information of different scales. 
In many cases, the training of deep learning networks requires a large number of data sets, and 
the cost of biomedical data (images and texts) is higher. The U-Net is very effective for the 
segmentation of medical images with few samples and also has good noise immunity. To a 
certain extent, the noise image has less influence on training process. However, this model 
also has problems objectively: 1) most medical images have weak edges, which make the 
network perform better classification difficultly and cause partial loss of details; 2) structurally, 
simply superimposing the convolution layer can improve the expression ability of network, 
which will increase a mass of parameters and make training network difficult. Up to now, 
many scholars have proposed many improved methods for the U-Net [3, 4, 10, 12, 13]. 

 

 
Fig. 1. The U-Net structure includes convolution, maxpooling, concatenate and deconvolution. 

 
Chen L et al., “proposed DRINet [3] and a fully automatic acute ischemic lesion 

segmentation model (EDD+MUSCLE Net) [4]. The DRINet absorbed the idea of DenseNet 
[5], ResNet [6] and Inception V1 [7] and adopts dense connection block, residual inception 
block and unpooling block. Compared to U-Net, the structure of DRINet does not have any 
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skip connections and the connections are packaged in blocks, which makes the method be 
more flexible and has more accurate segmentation results. The EDD+MUSCLE Net [4] 
combines EDD Net with MUSCLE Net. The EDD Net consists two parallel full convolution 
network architectures, which can obtain the integrated segmentation results. MUSCLE Net 
composed of a mini VGG-Net [8, 9] is applied to judge true or false positive accurately. The 
fully automatic acute ischemic lesion segmentation model has eminent ability of segmentation 
and recognition using for tumor images. Some details are lost in the segmentation results 
because of the simple network structure and fewer network layers. 

Foivos I et al., “proposed ResUNet-a [10] which introduced a residual block to eliminate the 
problem of gradient dispersion or explosion effectively. The addition of the pyramid scene 
parsing pooling layer uses background context information [11], which strengthens the use of 
the whole network feature information and improves the performance of network. 
Concurrently, they improved Dice loss function to expedite the convergence of the network. 
However, the performance in segmentation results is not ideal in details. 

MDU-Net was proposed by Zhang J et al., “[12] and created three multi-scale dense 
connected structure: Dense Encoder and Decoder Block, Dense Cross connections Block and 
Fully Multi-scale Dense connected U-shape architecture. The characteristic of dense 
connection is lifting gradient back propagation, which is fully applied in the U-shape structure 
to make the training easier. Zhou Z et al., “created a nested U-Net architecture [13] that 
integrates different levels of feature information. The application of the deep supervision at the 
end of structure contributes to update weights more quickly during training. The skip 
connections are various in the two methods, which also brings a lot of calculation in the 
training process due to the large amount of parameters 

Badrinarayanan V proposed the SegNet method [14] which is extremely similar to FCN. 
The pooled index in upsampling layers make the model easier to optimize. The PSPNet [15] 
creates a pyramid pool block that can aggregate context information of different regions, 
which enhances the utilization of global information and enormously improves the 
performance of scene parsing. Nevertheless, these two methods have achieved good effect in 
scene image segmentation, but poor consequence in medical image segmentation.  

DeepLab [16] applied the atrous convolution which expands the receptive field, but the 
calculation amount is the same as convolution. The receptive field can extract more global 
information in images. They improved the performance of image boundary positioning by 
introducing a full connected Condition Random Field (CRF) in the final output of network. 
Although the model is successful, they still exist at least two limitations. Firstly, it needs to 
perform convolutions on a large number of detailed feature maps that usually have 
high-dimensional features, which compute expensively . Moreover, a large number of 
high-dimensional and high-resolution feature maps also require huge amounts of GPU 
memory resources [17]. 

2. Related Work 
The brain diseases are major killers of human health and are difficult to cure. Accurate 

diagnosis and efficient treatment of brain diseases has always been a medical problem. In the 
first year of human birth, the brain is in the stage of rapid development, some neuropathic 
diseases, such as attention deficit hyperactivity disorder (ADHD), infantile autism [18], 
bipolar affective disorder and schizophrenia, may be reflected in the pathological brain tissue 
of the patient's infancy. Therefore, it is significant that brain tissues are accurately segmented 
in infant images. 
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T1-weighted (T1-w) and T2-weighted (T2-w) non-invasive infant brain multimodal 
magnetic resonance images (MRI) are common, which provide enough data and good 
conditions for our segmentation studies. Our essential research process is to accurately 
segment three types of brain tissue (CSF, GM and WM), which is also very important for 
registration [19] and atlas building [20, 21]. However, the T1-weighted and T2-weighted 
infant brain MR images have problems of low contrast and uneven gray scale. Fig. 2 
demonstrates the gray distribution diagram of tissues in the MR images, from which it can be 
observed that the gray values in three tissues have a high overlap. In the gray distribution 
diagram of T1-w image, the gray values are largely overlapping in GM and WM. Moreover, 
all tissues are largely overlapping in the gray distribution diagram of T2-w image. The 
situation indicates that the contract is the lowest, which is the challenge for us to finish the 
tissue segmentation task. Obviously, some traditional methods are disabled to solve such 
problems, which leads us to attempt to use deep learning to complete the challenges. 

 
Fig. 2. The T1- and T2-weighted infant MR images in the isointense phase exhibit the contrast and 

obvious difference. The left side of the MR images are the tissue distribution in the brain, among them, 
the distribution overlap of WM and GM is very high. 

 
In structures of deep learning network, a large quantity of layers is superimposed, which 

means that many more features can be extracted to make the network have stronger expressive 
ability. However, increasing the number of layers will also bring plenty of parameters to make 
training more difficult，which will make convergence becoming slower and bring about lower 
accuracy (as opposed to shallower networks). The residual learning can effectively solve such 
a problem [6]. In each bottleneck block, the output is the addition of the convolution result and 
an identity map. The skip connection makes the convolution kernel only Learning the residual 
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features between the input and the output, which makes the gradient not disappear during the 
transfer process. Therefore, the network training becomes easy. The Inception v1[7] is 
proposed to break the conventional convolution pattern. The creation of the inception module 
reduced a good deal of parameters and saved computational overhead. At the same time, the 
design of this module can effectively expand the scope of expression features. 

U-Net and its variant models have the defects of losing details in many data sets of image 
segmentation task, and some of them even have problems such as too long training time, 
gradient disappearance and slow convergence. In order to solve these problems, we propose a 
triple residual multiscale fully convolution network (TRMFCN) model with three levels of 
input, which can extract from multiple scales effectively. Moreover, we introduce the Residual 
Multiscale (RM) block to make the convergence more easily and apply Concatenate Block to 
extract more information. Our main contributions are: 1) the multi-scale input method 
increases the utilization of image information; 2) the Residual Multiscale (RM) block structure 
improves the computational efficiency; 3) The sufficient concatenations between layers 
enhance the reusability of feature information. 

3. TRMFCN 

3.1 Triple-Branched model 
Fig. 3 depicts the overall structure of our proposed model (TRMFCN), which is composed 

of encode and decode process. Encode process includes: traditional 2d convolution, 
maxpooling and residual multiscale (RM) block. Decode process includes: deconvolution, 
residuals multiscale (RM) block, concatenate block and traditional 2d convolution. The RM 
block is inspired by ResNet [6] and Inception V1 [7]. The creation of this concatenate block is 
inherited from U-Net. 
 

 
Fig. 3. The entire process is shown in the TRMFCN structure map, RM Block and Concatenate Block 
are important parts of the structure, the details of them are described in Fig. 4 and Fig. 5, respectively. 
 

In TRMFCN structure, the 2d convolution with 3 × 3 kernel-size is placed before all RM 
blocks to increase feature maps, and the kernel number was continuously increased to 60, 120, 
240 and 480 in the encoding process, continuously decreased to 240, 120, and 60 in the 
decoding process. To enable the RM block to extract enough features, we have placed four 2d 
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convolutions with a kernel size of 3 × 3 in front of the model output. Moreover, we also 
placed four 2d convolutions with a kernel size of 1 × 1 at the end of the model to obtain 
desired classification results (four classes). We set all the deconvolution step sizes to 2 to 
restore the image step by step. After 3 times of upsampling, the feature maps are restored to the 
original image size. The advantages including: 1) the form of input strengthens the 
information extraction of the data; 2) input branches can be adjusted according to different 
data sets, and the structure is flexible. 

3.2 Residual Multiscale block 
In the feature extraction process, a large-scale convolution kernel can make the model learn 

some large features, and a small-scale convolution kernel can make the model learn some 
details. Fig. 4 is the residual multiscale (RM) block, the basic convolution is divided into three 
different convolutions, and the number of convolution kernels is one third of the input 
channels. Finally, we put the concatenation of all convolution results and the input into the 
shortcut (addition). The essence of shortcut connection is the identity map. our block output 
can be expressed as follows: 

   𝑥𝑥𝑘𝑘+1 = 𝑔𝑔(�𝑓𝑓1(𝑥𝑥𝑘𝑘)⨀𝑓𝑓3(𝑥𝑥𝑘𝑘)⨀𝑓𝑓5(𝑥𝑥𝑘𝑘)�,𝑥𝑥𝑘𝑘)                                      (1) 
where the ⨀ indicates concatenation and 𝑔𝑔(⋅) denotes the identity mapping. 𝑓𝑓1(⋅), 𝑓𝑓3(⋅) and 
𝑓𝑓5(⋅)  represent the convolution of 1 × 1 , 3 × 3  and 5 × 5  kernel sizes after batch 
normalization (BN) [22] and rectified linear unit (ReLU) [23], respectively. 
 

 
Fig. 4. A residual multiscale block is the inception module combines residual connection, different 
branches have convolution kernels of different sizes, a skip connection appears after feature maps 

concatenated. 
 

Unlike the traditional 2d convolution, our block can extract more information from feature 
maps. The residual connections [24] make the training easier, and the multiscale convolutions 
make the model learn more features. 
 

3.3 Concatenate Block 
Fig. 5 demonstrates the structure of concatenate block, from which we concatenate feature 
maps from the encoding process and decoding process (the size of the fusion here is the same) 
to complete feature fusion. Moreover, fusion elements in encoding process have two more 
parts than U-Net, and Fig. 1 and Fig. 3 clearly show the difference. The concatenate layer 
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fuses many more shallow features, which improve the reusability of features and contribute to 
the decoding process. 
 

 
Fig. 5. A is the encoding part of TRMFCN, B is its decoding part, and the Concatenate block represents 

the way of feature fusion. 
 

3.4 Fully convolutional networks 
Convolutional neural network (CNN) usually connects several full connection layers after a 

series of convolution, and finally obtains the final feature corresponding to the image, namely 
probability vector, which is used for image level classification or regression task. FCN [2] 
performs the pixel-level classification task and turns the full connection into convolution and 
deconvolution, then the feature maps are restored to the original image size. The specific 
formula can be expressed as follows: 

𝐶𝐶𝑖𝑖 = 𝑊𝑊𝑖𝑖⨂𝐶𝐶𝑖𝑖−1 + 𝑏𝑏𝑖𝑖                                                       (2) 
𝐶𝐶𝑖𝑖 = 𝜎𝜎(𝐶𝐶𝑖𝑖)                                                              (3) 

where 𝐶𝐶𝑖𝑖 denotes the result of the 𝑖𝑖-th convolution, 𝑊𝑊𝑖𝑖 denotes the 𝑖𝑖-th convolution weight 
vector and 𝑏𝑏𝑖𝑖  denotes the 𝑖𝑖-th convolution bias, ⨂ is the convolution, and the 𝜎𝜎(∙) is the 
activation function. The objective function, namely the energy function, is defined as: 

𝐸𝐸 = −∑𝐼𝐼𝑖𝑖𝑖𝑖∈𝐼𝐼∑𝑐𝑐=1
𝐶𝐶 𝑞𝑞𝑐𝑐(𝐼𝐼𝑖𝑖𝑖𝑖) log𝑝𝑝𝑐𝑐(𝐼𝐼𝑖𝑖𝑖𝑖)                                        (4) 

The 𝑝𝑝𝑐𝑐(𝐼𝐼𝑖𝑖𝑖𝑖) represents the output probability, which is pixel 𝐼𝐼𝑖𝑖𝑖𝑖 belongs to class 𝑐𝑐, and 𝑞𝑞𝑐𝑐(𝐼𝐼𝑖𝑖𝑖𝑖) 
is the true probability distribution. 

3.5 Fully convolutional networks 
In order to reasonably analyze the segmentation result of different models, we use Jaccard 

similarity (Js value) [25] to evaluate the performance of different models, which is defined as: 
𝐽𝐽𝐽𝐽(𝑆𝑆1,𝑆𝑆2) = (𝑆𝑆1 ∩ 𝑆𝑆2)/(𝑆𝑆1 ∪ 𝑆𝑆2)                                           (5) 

Where 𝑆𝑆1 denotes the segmentation result and 𝑆𝑆2 denotes the ground truth, in this way, a 
higher JS value indicates that the model performs better in the test. In the subsequent 
evaluation, Js values of CSF, GM and WM will be taken as important indicators to evaluate the 
model quality. The expressions of the three parts can be expressed as follows:  

𝐽𝐽𝐽𝐽𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶1,𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶2) = (𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶1 ∩ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶2)/(𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶1 ∪ 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶2)                        (6) 
𝐽𝐽𝐽𝐽𝐺𝐺𝐺𝐺(𝑆𝑆𝐺𝐺𝐺𝐺1,𝑆𝑆𝐺𝐺𝐺𝐺2) = (𝑆𝑆𝐺𝐺𝐺𝐺1 ∩ 𝑆𝑆𝐺𝐺𝐺𝐺2)/(𝑆𝑆𝐺𝐺𝐺𝐺1 ∪ 𝑆𝑆𝐺𝐺𝐺𝐺2)                            (7) 
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𝐽𝐽𝐽𝐽𝑊𝑊𝐺𝐺(𝑆𝑆𝑊𝑊𝐺𝐺1, 𝑆𝑆𝑊𝑊𝐺𝐺2) = (𝑆𝑆𝑊𝑊𝐺𝐺1 ∩ 𝑆𝑆𝑊𝑊𝐺𝐺2)/(𝑆𝑆𝑊𝑊𝐺𝐺1 ∪ 𝑆𝑆𝑊𝑊𝐺𝐺2)                       (8) 
Where 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶1 denotes the segmentation result of cerebrospinal fluid (CSF), and 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶2 denotes 
the ground truth of CSF. The 𝑆𝑆𝐺𝐺𝐺𝐺1 denotes the segmentation result of gray matter (GM), and 
the 𝑆𝑆𝐺𝐺𝐺𝐺2 denotes the ground truth of GM. The 𝑆𝑆𝑊𝑊𝐺𝐺1 denotes the segmentation result of white 
matter (WM), and the 𝑆𝑆𝑊𝑊𝐺𝐺2 denotes the ground truth of WM. 

4. Experiments 

4.1 Segmentation in infant brain MR images 
Data preprocessing: The dataset we choose for the experiment is from iSeg-2017 

challenge, and the average age of these babies collected was 6 months [26] without any 
pathology. We selected 10 labeled babies, each with 256 groups (256 brain MR T1-w images, 
256 brain MR T2-w images and corresponding labeled images). Since two-thirds of the 
images for each baby are all black backgrounds (all pixel values are 0), we removed these 
images to avoid interfering with network training. At last, a total of 996 images were obtained 
and the data was scrambled. About 10% (96 groups) were selected as the test set and the 
remaining 10% as the verification set. 

Model train: The encoding structure of our model (TRMFCN) has three inputs: the first 
input is the T1-w image with the size of 192 × 144 × 1; the second input is the T2-w image, 
and its size is also 192 × 144 × 1; the third input is different from the first two, which 
concatenates T1-w and T2-w images with a size of 192 × 144 × 2. There was only one input 
in the experiments of comparison methods. Therefore, we concatenate T1-w image and the 
corresponding T2-w image with a size of  192 × 144 × 2 as the input. 

The Adam optimizer is chosen in the training process of our model. We set mini-batch size 
to 10 and the iterations to 80. We also apply the dropout [27] to prevent overfitting. After 
getting the result of the residual multiscale block, we set the dropout rate to 0.3. Our 
experiment used the Keras package in python codes. The training lasts for 2 hours, and it takes 
an average of 90 seconds to complete an iteration. The entire training process was on an 
NVIDIA GeForce GTX 1080 Ti GPU (11GB). 

Experiment Results: We used the seven methods: FCN, U-Net, DRINet, EDD+MUSCLE 
Net, MDU-Net, ResUNet-a and U-Net++ as comparative experiments. Each method was 
trained 8 times and the best model was saved, and we randomly selected one for test and 
comparison. We use these trained models to test 96 T1-w images and the corresponding 96 
T2-w images. The Js values (CSF, GM and WM) of the test results are listed in Table 1 
clearly. 

From the 7 comparison results, we can intuitively see the differences, Firstly, the Js values 
(CSF, GM and WM) of U-Net in all classes are far superior to FCN, which indicates the 
positive function of concatenation in segmentation. Although DRINet constitutes a simple 
network structure in a modular way and removes the skip connection, the performance is not 
as good as the original U-Net in this data set. Additionally, the other three methods: EDDNet, 
MDUNet and U-Net++ are also worse than U-Net. Moreover, the ResUNet-a outperformed 
U-Net on WM and GM, which indicates that the residual connection optimizes the model to 
some extent. 

Compared to the results of these seven methods, the model we proposed demonstrates the 
best results, whose test results of the model obtained the highest Js values (CSF, GM and WM) 
in eight methods. We have concluded two main reasons that improve the accuracy: 1) Residual 
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learning makes our model converge faster. 2) Various concatenations allow the network to 
learn more features from shallow layers. 

We randomly select one image from 96 test result images to visually compare the 
segmentation results of different methods. Fig. 6 (a-g) shows the segmentation results of seven 
methods, where the Fig. 6 (a-f) shows the images of six comparison methods and the Fig. 6 (g) 
is the result of our method. The Fig. 6 (h) is the corresponding label. Due to the poor 
segmentation results of the FCN, we did not show the renderings. We marked the label and all 
segmentation images with a dark red box in the same representative position. Compared the 
differences in these red boxes, we find that white matter bands and cerebrospinal fluid bands 
have evident fractures in the segmentation images of the six comparative methods. These 
methods lost some details in the brain tissue. Obviously, these methods do not perform as well 
as our method in segmentation of baby brain MR images. 
 

 
Fig. 6. Comparison of seven segmentation methods. From (a) to (h): U-Net, DRINet, EDDNet, 

MDUNet, ResUNet-a, U-Net++, the results of the proposed method, and the ground truth. The dark red 
box represents the obvious segmentation error. 
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Table 1. Comparison of mean Js values of CSF, GM, WM% in eight methods 
Method CSF (%) GM (%) WM (%) 
FCN [2] 52.35 62.17 51.21 

U-Net [1] 87.96 80.70 72.24 
DRINet [3] 81.61 78.75 69.81 
EDDNet [4] 85.86 78.92 70.28 

MDUNet [12] 86.65 78.05 67.56 
ResUNet-a [10] 87.71 81.50 74.34 
U-Net++ [13] 84.55 76.54 65.24 

TRMFCN (our) 89.26 83.84 77.26 
We obtained the accuracy (Acc) and variance (Var) of the 350 test results by calculation in 

Table 2. The accuracy (Acc) can be expressed as follows:  
𝐴𝐴𝑐𝑐𝑐𝑐(𝑆𝑆1′,𝑆𝑆2′) = (𝑆𝑆1′ ∩ 𝑆𝑆2′)/𝑆𝑆2′                                          (9) 

where the 𝑆𝑆1′ denotes the segmentation result without black background information. The 𝑆𝑆2′ 
denotes the corresponding ground truth without black background information. Our model 
obtained the lowest variance in accuracy (Acc), CSF and GM, which manifests that our model 
has good robustness. 
 

Table 2. Methods of accuracy (%) and variances (10-4) of Js values 
Method Acc Var (Acc) Var (CSF) Var (GM) Var (WM) 
FCN [2] 74.26 9.44 86.01 26.51 268.11 

U-Net [1] 90.01 6.21 19.65 16.76 137.23 
DRINet [3] 88.32 7.60 24.06 22.17 180.87 
EDDNet [4] 88.82 5.84 18.98 17.31 167.56 

MDUNet [12] 88.45 7.58 19.30 15.59 223.35 
ResUNet-a [10] 90.43 4.80 19.10 14.83 117.14 
U-Net++ [13] 87.22 12.02 32.52 23.10 203.71 

TRMFCN (our) 91.81 3.86 14.76 13.63 126.07 

4.2 Segmentation in 2.5D infant brain MR images 
Data preprocessing: In order to acquire complete neighborhood information, we reserve 

all the black background images and obtain 2560 groups of images. These extra black 
background images are only used as domain information. The test set (96 groups) is same as 
the 4.1. 

 
Fig. 7. The left half is the normal 2D input and the right half is the 2.5D input. 
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Model train: We changed the input of the model to a 2.5D form [28], which makes the 
network learn the domain feature information of the image to improve the segmentation 
accuracy. Fig. 7 shows the difference between 2D input and 2.5D input. The 2D input has only 
one channel, but the 2.5D input has 2𝑘𝑘 + 1 channels (From the above 𝑘𝑘  images and the 
following 𝑘𝑘  images), where 𝑘𝑘  represents the number of the neighborhood images. In the 
experiment, we chose the value of 𝑘𝑘 to be 2. Therefore, in our proposed method: the first input 
is five T1-w images (192 × 144 × 5), the second input is five T2-w images (192 × 144 × 5), 
and the third input is the concatenation of the first two inputs (192 × 144 × 10). The input 
form of all comparison methods is the same as the third input of our method. In network 
training, we still use the Adam optimizer to set mini-batch size to 10 and the iterations to 80. 
The dropout rate is set to 0.3 after the residual multiscale block.  

Experiment Results: With the same number of iterations, the Js value of our method is the 
highest among all the eight methods, and Table 3 shows the performance of each method 
visually. In Table 1 and Table 3, compared to the 2D input form, the 2.5D input form in most 
models has better segmentation accuracy. In Table 4, although the variances of white matter 
and accuracy are not the lowest, in general, our model is still the most robust. 
 

Table 3. Comparison of mean Js values of CSF, GM, WM% in eight 2.5D methods 
Method(2.5D) CSF (%) GM (%) WM (%) 

FCN [2] 53.29 63.02 52.81 
U-Net [1] 90.64 85.28 78.06 

DRINet [3] 83.16 81.87 77.08 
EDDNet [4] 88.00 82.84 75.54 

MDUNet [12] 89.19 81.14 70.52 
ResUNet-a [10] 88.97 84.49 78.09 
U-Net++ [13] 83.95 73.63 60.07 

TRMFCN (our) 91.10 85.88 79.55 
 

Table 4. 2.5D Methods of accuracy (%) and variances (10-4) of Js values 
Method(2.5D) Acc Var (Acc) Var (CSF) Var (GM) Var (WM) 

FCN [2] 75.06 8.25 85.39 21.34 262.39 
U-Net [1] 92.49 4.12 13.10 14.99 152.13 

DRINet [3] 89.97 5.42 21.95 19.46 95.94 
EDDNet [4] 90.99 4.89 13.01 17.72 163.95 

MDUNet [12] 90.16 5.22 12.79 14.62 198.48 
ResUNet-a [10] 92.06 3.60 12.93 14.28 130.15 
U-Net++ [13] 85.42 13.67 21.81 33.40 268.78 

TRMFCN (our) 92.93 3.72 12.77 14.06 122.27 

5. Discussion and Conclusion 
In this paper, we propose a full convolution network TRMFCN based on multi-modal data 

characteristics. We create a new form of input, residual multiscale (RM) block and 
concatenate block. The residual multiscale block in the structure solves the problem of 
gradient diffusion and makes the network training more efficient. The concatenate block 
greatly enhances the reusability of features to make the global feature information more fully 
learned. Our model is flexible for NMR multi-modal image data. If a new modal data is added, 
we can extend an extra branch. 
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Our method can also be applied to single-mode MR image segmentation. We selected a 
dataset of adult brain MR images from the Internet Brain Segmentation Repository (IBSR) to 
validate our ideas. There are 2304 adult brain MR images and 2304 corresponding labels in 
this data set. We also remove 257 images of all black backgrounds to optimize the data. Then 
we randomly selected 247 images as the test set and 1800 images as the training set, finally we 
used 200 images in the training set for verification. We changed all three input values to the 
same, so that a brain MR image can enter the network. We listed all Js values in Table 5 after 
the test, where the results of TRMFCN are still the best. 

 
Table 5. Comparison of mean Js values of CSF, GM, WM% in eight methods 

Method(2.5D) CSF (%) GM (%) WM (%) 
FCN [2] 30.22 77.84 70.61 

U-Net [1] 78.08 92.27 90.61 
DRINet [3] 54.82 85.74 81.82 
EDDNet [4] 68.26 89.97 87.35 

MDUNet [12] 75.33 89.74 86.37 
ResUNet-a [10] 74.70 91.27 89.35 
U-Net++ [13] 43.83 71.73 66.98 

TRMFCN (our) 78.41 92.82 91.25 
 
Because of the extension of structure and the increase of the concatenated feature maps, the 

parameters will become more many. In order to reduce the amount of calculation, we will 
improve the method and even use the transfer learning [29] in the future. Meanwhile, we also 
guarantee its excellent ability. 

References 
[1] Ronneberger O, Fischer P, Brox T, “U-Net: Convolutional Networks for Biomedical Image 

Segmentation,” in Proc. of MICCAI 2015. Springer International Publishing, 234-241, 2015. 
Article (CrossRef Link). 

[2] Long J, Shelhamer E, Darrell T, “Fully convolutional networks for semantic segmentation,” IEEE, 
3431-3440, 2015. Article (CrossRef Link). 

[3] Chen L, Bentley P, Mori K, et al., “DRINet for Medical Image Segmentation,” IEEE Transactions 
on Medical Imaging, 2018. Article (CrossRef Link). 

[4] Chen L, Bentley P, Rueckert D, “Fully automatic acute ischemic lesion segmentation in DWI 
using convolutional neural networks,” Neuroimage Clinical, 15, 633-643, 2017.  
Article (CrossRef Link). 

[5] Huang G, Liu Z, Laurens V D M, et al., “Densely Connected Convolutional Networks,” 2016. 
Article (CrossRef Link). 

[6] He K, Zhang X, Ren S, et al., “Deep Residual Learning for Image Recognition,” in Proc. of  IEEE 
Conference on Computer Vision & Pattern Recognition. IEEE Computer Society, vol. 1, pp. 
770-778, 2016. Article (CrossRef Link). 

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. 
Rabinovich, “Going deeper with convolutions,” in Proc. of CVPR, pp. 1–9, 2015.  
Article (CrossRef Link). 

[8] Simonyan K, Zisserman A, “Very Deep Convolutional Networks for Large-Scale Image 
Recognition,” Computer Science, 2014. Article (CrossRef Link). 

[9] Princy Matlani and Manish Shrivastava, “Hybrid Deep VGG-NET Convolutional Classifier for 
Video Smoke Detection,” CMES: Computer Modeling in Engineering & Sciences, Vol.119, No.3, 
pp.427-458, 2019. Article (CrossRef Link). 

 

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1411.4038
https://ieeexplore.ieee.org/document/8357580
https://www.sciencedirect.com/science/article/pii/S221315821730147X
http://arxiv.org/abs/1608.06993
https://www.computer.org/csdl/proceedings-article/cvpr/2016/8851a770/12OmNxvwoXv
https://ieeexplore.ieee.org/document/7298594
https://arxiv.org/abs/1409.1556
https://www.researchgate.net/publication/334542934_Hybrid_Deep_VGG-NET_Convolutional_Classifier_for_Video_Smoke_Detection


974                                   Chen et al.: Fully Convolutional Network Model for Multimodal Infant Brain MRI Segmentation 

[10] Diakogiannis F I, Waldner, François, Caccetta P, et al., “ResUNet-a: a deep learning framework 
for semantic segmentation of remotely sensed data,” 2019. Article (CrossRef Link). 

[11] Lanlan Rui, Yabin Qin, Biyao Li and Zhipeng Gao, “Context-Based Intelligent Scheduling and 
Knowledge Push Algorithms for AR-Assist Communication Network Maintenance,” CMES: 
Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp.291-315, 2019.  
Article (CrossRef Link). 

[12] Zhang J, Jin Y, Xu J, et al., “MDU-Net: Multi-scale Densely Connected U-Net for biomedical 
image segmentation,” 2018. Article (CrossRef Link). 

[13] Zhou Z, Siddiquee M M R, Tajbakhsh N, et al., “UNet++: A Nested U-Net Architecture for 
Medical Image Segmentation,” 2018. Article (CrossRef Link). 

[14] Badrinarayanan V, Kendall A, Cipolla R, “SegNet: A Deep Convolutional Encoder-Decoder 
Architecture for Scene Segmentation,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 1-1, 2017. Article (CrossRef Link). 

[15] Zhao H, Shi J, Qi X, et al., “Pyramid Scene Parsing Network,” 2016. Article (CrossRef Link). 
[16] Chen L C, Papandreou G, Kokkinos I, et al., “Semantic Image Segmentation with Deep 

Convolutional Nets and Fully Connected CRFs,” Computer Science, 2014(4), 357-361, 2014. 
Article (CrossRef Link). 

[17] Lin G, Milan A, Shen C, et al., “RefineNet: Multi-Path Refinement Networks for High-Resolution 
Semantic Segmentation,” 2016. Article (CrossRef Link). 

[18] G. Li, et al., "Early Diagnosis of Autism Disease by Multi-Channel Cnns," Machine Learning in 
Medical Imaging, pp. 303-309, 2018. Article (CrossRef Link). 

[19] S. Hu, et al., "Learning-Based Deformable Image Registration for Infant MR Images in the First 
Year of Life," Medical Physics, vol. 44, pp. 158-170, Jan 2017. Article (CrossRef Link). 

[20] F. Shi, et al., "Neonatal Atlas Construction Using Sparse Representation," Human Brain Mapping, 
vol. 35, pp. 4663-4677, Sep 2014. Article (CrossRef Link). 

[21] F. Shi, et al., "Construction of Multi-Region-Multi-Reference Atlases for Neonatal Brain MRI 
Segmentation," NeuroImage, vol. 51, pp. 684-693, Jun 2010. Article (CrossRef Link). 

[22] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing 
internal covariate shift,” ICML, pp. 448–456, 2015. Article (CrossRef Link). 

[23] Kazuhiko Kakuda, Tomoyuki Enomoto and Shinichiro Miura, “Nonlinear Activation Functions in 
CNN Based on Fluid Dynamics and Its Applications,” CMES: Computer Modeling in Engineering 
& Sciences, Vol.118, No.1, pp.1-14, 2019. Article (CrossRef Link). 

[24] He K, Zhang X, Ren S, et al., “Identity Mappings in Deep Residual Networks,” 2016.  
Article (CrossRef Link). 

[25] Li C, Xu C, Anderson A W, et al., “MRI Tissue Classification and Bias Field Estimation Based on 
Coherent Local Intensity Clustering: A Unified Energy Minimization Framework,” Springer 
Berlin Heidelberg, 288-299, 2009. Article (CrossRef Link). 

[26] L. Wang, et al., "Longitudinally Guided Level Sets for Consistent Tissue Segmentation of 
Neonates," Human Brain Mapping, vol. 34, pp. 956-972, Apr 2013. Article (CrossRef Link). 

[27] N. Srivastava, et al., "Dropout: A Simple Way to Prevent Neural Networks from Overfitting," The 
Journal of Machine Learning Research, vol. 15, pp. 1929-1958, 2014. Article (CrossRef Link). 

[28] Hu K, Liu C, Yu X, et al., “A 2.5D Cancer Segmentation for MRI Images Based on U-Net,” in 
Proc. of 2018 5th International Conference on Information Science and Control Engineering 
(ICISCE), 2018. Article (CrossRef Link). 

[29] Zamir A, Sax A, Shen W, et al., “Taskonomy: Disentangling Task Transfer Learning,” 2018. 
Article (CrossRef Link). 

  

https://arxiv.org/abs/1904.00592?context=cs
https://www.researchgate.net/publication/331285794_Context-Based_Intelligent_Scheduling_and_Knowledge_Push_Algorithms_for_AR-Assist_Communication_Network_Maintenance
https://arxiv.org/abs/1812.00352?context=cs
https://arxiv.org/abs/1807.10165v1
https://arxiv.org/abs/1511.00561?context=cs
https://www.arxiv.org/abs/1612.01105
https://arxiv.org/abs/1412.7062
https://arxiv.org/abs/1611.06612
https://www.ncbi.nlm.nih.gov/pubmed/30450494
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12007
https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.22502
https://linkinghub.elsevier.com/retrieve/pii/S105381191000193X
http://de.arxiv.org/pdf/1502.03167
https://www.researchgate.net/publication/330484499_Nonlinear_Activation_Functions_in_CNN_Based_on_Fluid_Dynamics_and_Its_Applications
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_38
https://link.springer.com/chapter/10.1007%2F978-3-642-02498-6_24
https://www.ncbi.nlm.nih.gov/pubmed/22140029
http://www.cs.cmu.edu/%7Ersalakhu/papers/srivastava14a.pdf
https://ieeexplore.ieee.org/document/8612509
https://arxiv.org/abs/1804.08328


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 3, March 2020                                      975 

 
Yunjie Chen received the B.S. and M.S. degree from the school of Math and Statistics, 
Nanjing University of Information Science and Technology, Nanjing, China, in 2002 and 
2005, respectively. And the Ph.D. degree from the School of Computer Science and 
Engineering, Nanjing University of Science and Technology, in 2009. He is currently a 
Professor with the School of Math and Statistics, Nanjing University of Information Science 
and Technology. His research interests include medical image processing, statistical analysis, 
and machine learning. 
E-mail: priestcyj@nuist.edu.cn 

 
 
Yuhang Qin received the B.S. degree in Heilongjiang University of Science and 
Technology, Harbin, China, in 2019. His research interest is mainly focused on image 
segmentation with deep learning. 
E-mail: qinyuhang98@163.com 
 
 
 
 
 
 

 
Zilong Jin received the B.E. degree in computer engineering from Harbin University of 
Science and Technology, China, in 2009, and the M.S. and Ph.D. degrees in computer 
engineering from Kyung Hee University, Korea, in 2011 and 2016, respectively. He is 
currently an assistant professor of School of Computer and Software at Nanjing University 
of Information Science and Technology, China. His research interests include wireless 
sensor networks, mobile wireless networks, and cognitive radio networks. 
E-mail: zljin@nuist.edu.cn 
 
 
 
Zhiyong Fan received MSc. from Nanjing University of Information Science and 
echnology (NUIST) in 2007, China. He received Ph.D. degree in Nanjing University of 
Science and Technology in 2016, China. Now, he is a lecturer in the School of Automation at 
NUIST, China. His current research interests include medical imaging, image processing 
and pattern recognition. 
E-mail: zhiyongfan1981@163.com 
 
 
 

 
Mao Cai received the B.S. degree in Information and Computing Science from Nanjing 
University of Information Science and Technology, Nanjing, China, in 2019. His research 
interest is mainly focused on pattern recognition, image segmentation, and image 
processing. 
E-mail: 1440896206@qq.com 
 


