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Abstract

In this paper we establish bivariate exponentially weighted moving
average (EWMA) control charts for autocorrelated processes using
residual vectors. We first derive the residual vectors, their expectation,
variance- covariance matrix, then evaluate the control chart based on the
average run length (ARL).
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1. Introduction

In statistical process control, it is usually assumed on the process output at
different times are IID. However, for many processes the observations are
correlated and control charts for monitoring these processes have recently received
much attention. Many authors suggested fitting on appropriate time series model
to the process and using residuals as control statistic on a control chart(Abraham
and Kartha(1979), Alwan and Roberts(1988), Yourstone and Montgomery (1989),
Harris and Ross(1991), Box and Ramirez(1992), Longnecker and Ryan(1992),
Y aschin(1993), Wardell et al.(1993), and Runger et al.(1995)).

There are many situations in which the simultaneous control of two or more
related quality characteristics is necessary so, many authors suggested multivariate
control charts (Alt(1985), Jackson(1985), Lowry and Montgomery(1995), Mason et
al(1997)). Lowry et al(1992) studied multivariate EWMA chart under process
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output at different times are IID.

Autocorrelation is quite common in in chemical and process industries and
often several process variables are measured and stored simultaneously.
Runger (1996), Mason et al(1996), Bakshi(1998), Negiz and Cinar(1998) studied
multivariate control charts for autocorrelated processes.

Our objective is to evaluate the properties of multivariate EWMA chart when
the residual vectors are used to monitor an autocorrelated process. A simple
vector time series model is used here to represent the observations from an
autocorrelated process.

2. Modeling and Controlling the Process

2.1 Vector Time Series Process Measured with Random Error
V ector

In this section, a vector time series process with random error vector will be
developed. Let
Xy = 4 t &, (2.1)

where y, is the observation vector at time t, g, is the process mean vector at
time t, and &, is the measurement error vector at time t.
It is also assumed that g, can be described as a vector first order

autoregressive (vector AR(1)) process with process level & that is (Box and
Jenkins(1976)),

u= (I- Q)&+ Oy 1+ 6, (22)

where §;, the random shock vector at time t, is assumed to be multivariate

normally  distributed mean vector 0 and variance-covanance matrix >06,
independent of measurement error vector, and independent of the random shock
vector at any other time.

The vector AR(1) process observed with measurement error vector is
equivalent to a vector first-order antoregressive first-order moving average
(vector ARMA (1,1)) process (Box and Jenkins(1976)). The ARMA (1, 1) process
can be written as

(I- OB) 2= (I- 9)£+ (I- 6B) a,. (23)

where B is a back shift operator such that B x,= x, ; and a, is uncorrelated
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and multivariate normally distributed with mean vector 0 and variance -
covariance matrix >.,a and @ is the moving -average parameter matrix and @
is the autoregressive parameter matrix.

2.2 Step Change in the Process Level

When the process is in-control (£= &), minimum MSE forecast vector
made at time t for t+ 1 is

X= Eot O(x- &)- O ey

where e,= X;- X;.
= Xi- So- O( X 1- &)+t Oe
and e, is the residual vector at time t. Suppose that there is a step change

from &, to &, in the process level between time t=k- 1 and k. Then the
process can be written as

-

EO_ @EO+@X1 1t 8- @a1 1 t= k- 1,k- 2,
X;=dE1- Q&5+ Ox .+ 8- Ba,. g, t=k
1° @El*—olt 1t a- @a1 19 t= k+ 1,k+2,"'
and the expectation of the observation vector x; is
£, t= k- 1,k- 2,---
E(xy)=
1, t= k,k+ 1,k+ 2,---
Therefore the residual vectors are
_ati t<k
&= (El' EO)+ 4, t=
(1+6+6" " +60" (- O+ 061 &- &)+ a, t=k+l, 121,23,

Since a, is white noise, we have

Y t= k- 1,k- 2,--
E(e)=d4&- &os t=k
(I1+ 0+ @+ -+ 0" H(1- O+ O1(&- &), t=k+ Lk+ 2,

3. Multivariate EWMA Chart of Residual Vectors
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The Multivariate EWMA control statistic using residual vectors is
Yt: (1' X)YI_1+AV\/L 0<A<1

where W= e- E(e)]'2 .'[ &- E(e)] .
The continuous-state Markov chain is discretized by dividing the interval

between 0 and the control limit L into n subintervals of width w= L/n. Let
S; be the midpoint of thejth interval, j =1, 2. - - , n. So, Y, is in transient
state j at timet if S;- —‘3’<YI<SJ-+ —\g’ Brook and Evans (1972) has shown

that the ARL vector N when the process is in control is given by
N= (I-R) "1,

where the jth element of N represents the ARL for the process starts from
state j. Transition probability matrix, represented in partitioned matrix
form, for this Markov chain can be written as

P= (pjx) = P (going to state k |in state j)

R (- R)1

0’ 1

where the submatrix R is a (nxn) matrix which contains the transient
probability of going from one transient state to another, | is a (nxn)

identity matrix, 0 is a column vector of zeros and 1 is the column vector of
ones.

4. Numerical Results and Conclusions

The parameters e, 0, @ and @ in the time series model can be estimated
from the preliminary data. For simplicity, suppose that those parameters are
known. The following control procedures will be compared on the basis of their
ARL performances.

1 p
(1) 2le= ., 0 =02 05 08

0 1
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02 0.1 0.3 0.1 0.8 0.5
@) &= NE . 0= ,
0.1 0.2 0.1 0.3 05 0.8
0.9 0.8
o=
0.8 0.9

@ &a=() &£=() &=(.) &=(5)

When comparing control charts, some kinds of standard for comparison is
necessary. The charts are matched for ARL when the process is in control. This
enables the performance to be evaluated when the process has shifted away from
its target value. In our computation, the ARL in control was fixed to be 200.

Tables 1-4 show that ARL of the bivariate EWMA control charts decrease as

A increases, and decreases as p and £ increase.

In conclusion, we drive residual vector, variance-covariance matrix and then
construct multivariate EWMA control statistic for autocorrelated process. Also we
evaluate bivariate EWMA control charts based on the ARL and identify the

relationship among A, o, £ and ARL.

(Table 1) ARL values for multivariate EWMA charts based on residual

0.2 0.1 0.3 0.2
vectors with @= and @=

0.1 0.2 0.2 0.3
<! p A=0.05 A=0.1 A=0.3
0.2 38458 30.265 30.840
(1 0) 05 26.303 19.002 16.663
08 11.602 7.172 4,014
0.2 25.249 18.105 16.022
(0 1) 05 17.270 11.622 8.681
08 7619 4740 2.634
0.2 9.362 5.794 3.192
-1 1) 05 5.778 3317 1595
08 1842 1.077 1.001
0.2 10.957 6.706 3.672
(2 0) 05 6.843 3.786 1.719
08 2.002 1.093 1.001
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(Table 2) ARL values for multivariate EWMA charts based on residual

0.3 0.1 0.3 0.2
vectors with @= and @=

0.1 0.3 0.2 0.3
g D 1=0.05 2=0.1 2=03
0.2 72.258 64.940 71774
(1 0) 05 8.682 5.926 4013
0.8 26.107 18.670 15.979
0.2 50.372 42.186 45.680
(0 1) 05 8.202 5.629 3.792
0.8 17419 11.636 8.568
0.2 21.365 14.729 11673
-1 1) 05 6.532 4.278 2615
0.8 5.247 2.748 1.276
0.2 24 354 17.044 14,059
(2 0) 05 6.298 4072 2.465
0.8 6.191 3.079 1.347

(Table 3) ARL values for multivariate EWMA charts based on residual

0.8 0.5 0.3 0.2
vectors with @= and @=

0.5 0.8 0.3 0.2
g D 1=0.05 2=0.1 2=03
0.2 77.216 70.730 77.999
(1 0) 05 70.593 63.350 70.376
08 35.140 26912 26482
0.2 88.769 82.840 91.036
(0 1) 05 86.426 80.816 89.249
08 44801 36.334 37.736
0.2 35.255 27.084 26.465
-1 1) 05 25545 18.019 15.231
08 10.343 5.945 2.800
0.2 31.204 23.363 22042
(2 0) 05 22.625 15.638 12412
08 9.214 5.296 2.524
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(Table 4) ARL values for multivariate EWMA charts based od residual

0.9 0.8 0.3 0.2
vectors with @= and @=
0.8 0.9 0.2 0.3
& p 1=0.05 A=0.1 A=03
0.2 25.953 18.799 16.696
(1 0) 05 17.675 12.037 9.150
038 7648 43818 2735
0.2 38.74 30.267 30.665
(0 1) 05 26.355 18931 16.480
08 10.648 6.377 3.370
0.2 9.280 5741 3.163
-1 1) 05 5.760 3.308 1588
038 1818 1072 1.001
0.2 7.783 4921 2.788
(2 0) 05 5.008 3.068 1601
038 1935 1.091 1.001
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