• Title/Summary/Keyword: weakly asymptotically regular

Search Result 7, Processing Time 0.027 seconds

Remarks on Fixed Point Theorems of Non-Lipschitzian Self-mappings

  • Kim, Tae-Hwa;Jeon, Byung-Ik
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.433-443
    • /
    • 2005
  • In 1994, Lim-Xu asked whether the Maluta's constant D(X) < 1 implies the fixed point property for asymptotically nonexpansive mappings and gave a partial solution for this question under an additional assumption for T, i.e., weakly asymptotic regularity of T. In this paper, we shall prove that the result due to Lim-Xu is also satisfied for more general non-Lipschitzian mappings in reflexive Banach spaces with weak uniform normal structure. Some applications of this result are also added.

  • PDF

Some results on metric fixed point theory and open problems

  • Kim, Tae-Hwa;Park, Kyung-Mee
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.725-742
    • /
    • 1996
  • In this paper we give some sharp expressions of the weakly convergent sequence coefficient WCS(X) of a Banach space X. They are used to prove fixed point theorems for involution mappings T from a weakly compact convex subset C of a Banach space X with WCS(X) > 1 into itself which $T^2$ are both of asymptotically nonexpansive type and weakly asymptotically regular on C. We also show that if X satisfies the semi-Opial property, then every nonexpansive mapping $T : C \to C$ has a fixed point. Further, some questions for asymtotically nonexpansive mappings are raised.

  • PDF

VISCOSITY APPROXIMATIONS FOR NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • East Asian mathematical journal
    • /
    • v.26 no.3
    • /
    • pp.337-350
    • /
    • 2010
  • Strong convergence theorem of the explicit viscosity iterative scheme involving the sunny nonexpansive retraction for nonexpansive nonself-mappings is established in a reflexive and strictly convex Banach spaces having a weakly sequentially continuous duality mapping. The main result improves the corresponding result of [19] to the more general class of mappings together with certain different control conditions.

WEAK AND STRONG CONVERGENCE OF MANN'S-TYPE ITERATIONS FOR A COUNTABLE FAMILY OF NONEXPANSIVE MAPPINGS

  • Song, Yisheng;Chen, Rudong
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1393-1404
    • /
    • 2008
  • Let K be a nonempty closed convex subset of a Banach space E. Suppose $\{T_{n}\}$ (n = 1,2,...) is a uniformly asymptotically regular sequence of nonexpansive mappings from K to K such that ${\cap}_{n=1}^{\infty}$ F$\(T_n){\neq}{\phi}$. For $x_0{\in}K$, define $x_{n+1}={\lambda}_{n+1}x_{n}+(1-{\lambda}_{n+1})T_{n+1}x_{n},n{\geq}0$. If ${\lambda}_n{\subset}[0,1]$ satisfies $lim_{n{\rightarrow}{\infty}}{\lambda}_n=0$, we proved that $\{x_n\}$ weakly converges to some $z{\in}F\;as\;n{\rightarrow}{\infty}$ in the framework of reflexive Banach space E which satisfies the Opial's condition or has $Fr{\acute{e}}chet$ differentiable norm or its dual $E^*$ has the Kadec-Klee property. We also obtain that $\{x_n\}$ strongly converges to some $z{\in}F$ in Banach space E if K is a compact subset of E or there exists one map $T{\in}\{T_{n};n=1,2,...\}$ satisfy some compact conditions such as T is semi compact or satisfy Condition A or $lim_{n{\rightarrow}{\infty}}d(x_{n},F(T))=0$ and so on.

STRONG CONVERGENCE OF COMPOSITE ITERATIVE METHODS FOR NONEXPANSIVE MAPPINGS

  • Jung, Jong-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1151-1164
    • /
    • 2009
  • Let E be a reflexive Banach space with a weakly sequentially continuous duality mapping, C be a nonempty closed convex subset of E, f : C $\rightarrow$C a contractive mapping (or a weakly contractive mapping), and T : C $\rightarrow$ C a nonexpansive mapping with the fixed point set F(T) ${\neq}{\emptyset}$. Let {$x_n$} be generated by a new composite iterative scheme: $y_n={\lambda}_nf(x_n)+(1-{\lambda}_n)Tx_n$, $x_{n+1}=(1-{\beta}_n)y_n+{\beta}_nTy_n$, ($n{\geq}0$). It is proved that {$x_n$} converges strongly to a point in F(T), which is a solution of certain variational inequality provided the sequence {$\lambda_n$} $\subset$ (0, 1) satisfies $lim_{n{\rightarrow}{\infty}}{\lambda}_n$ = 0 and $\sum_{n=0}^{\infty}{\lambda}_n={\infty}$, {$\beta_n$} $\subset$ [0, a) for some 0 < a < 1 and the sequence {$x_n$} is asymptotically regular.

The Test Statistic of the Two Sample Locally Optimum Rank Detector for Random Signals in Weakly Dependent Noise Models (약의존성 잡음에서 두 표본을 쓰는 국소 최적 확률 신호 검파기의 검정 통계량)

  • Bae, Jin-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8C
    • /
    • pp.709-712
    • /
    • 2010
  • In this paper, the two sample locally optimum rank detector is obtained in the weakly dependent noise with non-zero temporal correlation between noise observations. The test statistic of the locally optimum rank detector is derived from the Neyman-Pearson lemma suitable for the two sample observation models, where it is assumed that reference observations are available in addition to regular observations. Two-sample locally optimum rank detecter shows the same performance with the one-sample locally optimum rank detector asymptotically. The structure of the two-sample rank detector is simpler than that of the one-sample rank detector because the sign statistic is not processed separately.