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SOME RESULTS ON METRIC FIXED
POINT THEORY AND OPEN PROBLEMS

TAE HwA KiM* AND KYUNG MEE PARK

ABSTRACT. In this paper we give some sharp expressions of the weakly
convergent sequence coefficient WCS(X) of a Banach space X. They
are used to prove fixed point theorems for involution mappings 7' from a
weakly compact convex subset C of a Banach space X with WCS(X) >
1 into itself which T2 are both of asymptotically noriexpansive type and
weakly asymptotically regular on C. We also show that if X satisfies the
semi-Opial property, then every nonexpansive mapping I' : C — C has
a fixed point. Further, some questions for asymtotically nonexpansive
mappings are raised.

1. Introduction

Let X be a Banach space and C C X. A mapping T : C — X is said
to be nonezpansive if for each z,y € C, ||T(z) - T(y)|| < ||z —y||. It was
the 1965 discovery of a fundamental fixed point theorem for the class of
nonexpansive mappings that provided the foundations for much of the
subsequent metric fixed point theory. The central result of [32] asserts
that if X is reflexive, and if K is a bounded closed convex subset of
X which possesses a geometrical property called ‘ normal structure’ [6],
then every nonexpansive T': K — K has a fixed point, a fact also proved
(at the same time) by Browder [7] and Gohde [18) under the somewhat
stronger assumption that X is uniformly convex. For another rich fixed
point theory for mappings of this class, see Goebel-Kirk [17].

On the other hand, if T is merely assumed to be k-lipschitzian, that
is, for some fixed k > 0, || T(z)~T(y)|| < k||z —y|| for each z,y € C', then
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no comparable theory exists if the Lipschitz constant & > 1. Indeed, it
is known that for any k£ > 1 there exists a k-lipschitzian self-mapping of
the unit ball B of the infinite dimensional Hilbert space { which has no
fixed point (see [32]). It has been known for some time, however, that
such mappings T’ will always have fixed points if & is sufficiently near 1
and if appropriate constraints are placed on the iterates of T. One of
the first results of this type is due to Goebel [14] who proved that if A is
a weakly compact convex subset of a strictly conver Banach space, and
if K has normal structure, then a mapping T : K -+ K will always have
a fixed point if T'? is nonexpansive and if T is k-lipschitzian for k < 2.
We know that it remains true without the strict convexity assumption

(see [31]). Note that if K =[0,1] C Rand if T: K — K is defined by

0 if0<z <L
T(z)= 2(1—1—76) if{ggxg%;

1 £ 9

7 lf-]—é-s.l‘fl,

then T: K — K is not nonexpansive but 72 = 0.
A mapping T : C' — C is said to be asymptotically nonezpansive [15]
if for each n € N, there exists a real number k(n) such that

| T™z — T™y|| < k(n)|jz — y|| forall z,y € C

and lim k(n) = 1, where N denotes the set of natural numbers. We say
nmn—0o0

that a mapping T : C — C is said to be asymptotically nonezpansive
type (simply, a.n.t.) on C [33] if, for each z € C,

lim sup (sup{[| 7"  T"y|| — =~ y|]]: y < €} ) <o.

In section 2 of this paper, we give some sharp expressions of the
weakly convergent sequence coefficient WCS(X) of a Banach sapce X.
In section 3, using a characterization of WCS(X) we present a fixed
pomnt theorem for an involution map T from a weakly compact convex
subset C' of a Banach space X with WCS(X) > 1 into itself which T2
is both of asymptotically nonexpansive type and weakly asymptotically
regular on C. Finally, in section 4, we show that if X satisfies the semi-
Opial property, then every nonexpansive mapping 7 : C' — ( has a fixed
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point. Further, we give some questions for asymptotically nonexpansive
mappings. For variant open questions for nonexpansive mappings, see

also Kirk [34].

2. Geometrical coefficients of X
Let X be a non-Schur Banach space and A C X.

diam(4) = sup [l — y]|
r,yeEA

ra(A) = inf (sup ||z — y||) “the self- Chebyshev radius of A”.
T€A yea

For each z € X and each sequence {z,} € X, we set

r(z,{za}) = limsup |z, — 2|
n—oo

A({za}) = Jim (supf{la; — 2, : 1.7 > n})
“the asymptotic diameter of {z,}”

r({a}) =inf{r(z, {2n)) s 2 € S0 {20})}
“the Chebyshev radius of {z,} relative to co({z,})”

D({z,}) =limsuplimsup ||z, — zpnl,

where To(A) denotes the closed convex hull of A.

First, let us introduce some geometrical coeficients introduced by
Bynum [9].

(1) “the normal structure coefficient of X7
diam(A4)
rald)
A C X bounded closed convex with diam(A4) > 0}.

N(X) :inf{

(2) “the bounded sequence coefficient of X~
BS(X) = sup{M : for any bounded sequence {z,} in X,

3 y € @({zn}) such that M - Limsup |z, — y| < A({xn})}.

n—oo
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(3) “the weakly convegent sequence coefficient of X7

WCS(X) = sup{]ﬂ : for each weakly convergent sequence {r, 1,

3y €70({r,}) such that M- sup |z, — y|| < A({J«n})},

n—oc

; A({z
A(X) :inf{M : {zn} bounded nonconvergent sequence in X}.
r({zn})
REMARK 2.1. (a) N(X) = BS(X) = A(X) for any Banach space
(see Lim [36]).

WCS(X) = inf{ﬁg{—x"—}z : {z,} converges weakly (not strongly)}
r({z.})
W(X)= inf{ﬂ{—xf}—) : {zn} converges weakly (not strongly)},
rx( {xn})
where W(X) is a geometrical constant first introduced by Webb-Zhao
[44] and rx({z,}) = igi’ r{z, {zn}).

(b) 1 < N(X) = BS(X) < WCS(X) < W(X) <2 Let X = I,
direct sum of R7.. n > 1, where R” is the space R" with the maximum
norm. Then X is separable, reflexive and 1 = N(X) = BS(X) <
WCS(X) = V2 (see Baillon (3]).

We say that X has the uniform normal structure (UNS)EN(X)>1
and it has the weak uniform normal structure (WUNS)if WCS(X) > 1.

(c) [ WCS(X) > 1 = (WNS) ], where (WNS) means that any
weakly compact subset of X has normal structure, 1.c., any convex subset,
K of C containing more than one point must contain a point = € K which
has the property:

sup ||z — y|| < diam(K).
yeN

DEFINITION 2.1. (a) X with a Schauder basis {2n} has the Gossez-
Lami Dozo Property (GLD) [19] if for each ¢ > 0, I r = r(c) > 0 such
that
(GLD) [ Vz € X, Yn e N, [[Pu(z)| =1, and ||(I - Po)(z)|| > ¢

= =l 21+ ],
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ze; and (I —Pp)(z)=z—Pp(z)= > w;e; for
1 1=n+1

-

where P,(z) =

1

allz = ) zie; € X.
1=1
(b) X has the generalized Gossez-Lami Dozo property (GGLD) [21]

if for every weakly null sequence {z,} s.t. lim,_ ||zn]| = 1, we have

D({z,}) > 1.

(c) X has the Tingley property (T) [43] if for every weakly null (and
not constant) sequence {z,},

(T) sup (limsup ||zp — Zm| > liminf ||z,]|.

meN n—oo n-—0oo

Note that the following implications hold:

(GLD) 19) (WNS) B2 Fpp.N
4
(GGLD) 21 (T) 43 wns) B2 pppN),

where (FPP:N) means that for every weakly compact convex subset C
of X, every nonexpansive map T : C' — C has a fixed point.

Recently, Zhang [47] established the following sharp expression of the
weakly convergent sequence coefficient of X, WC S(X).

(x) WCS(X) = Sup{M :Tp, —u= M limsup |, —u| < A({J:n})},

n-—0o0

where “—" means the weak convergence. The idea of the proof in Zhang

[47] is as follows: For each z € X, define

r(z) = limsup ||z, — z||.

n—oo

Then, the functional r(z) is weakly lower semicontinuous and by using
the separability of ¢o{z,} the property (*) is easily obtained.
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REMARK 2.2. (a) D({z,}) < A({z,}) and
(b) D({x,}) # A({r,}) in general.

Consider the James’ quasi-reflexive space J consisting of all real se-

quences r := {rn} = > > z,e, for which lim 2, = 0 and lz]|, < oc,
n—oc
where

Rap=

}

and the supremum is taken over all choices of m and P1<p2<-- < pnm.
Then J is a Banach space with the norm | - 1I, and the sequence {e,}
given by e, = (0,...,0, 1,0,...) where the 1 is in the nth position, is a
Schauder basis for J.

”a’n”.) - Sup{[(‘rpl _'rpz)z + "'+(-Tpm_1 - Ipm,)l +($pm - IP])ZJ

Take 2, = e, — e,4 for each n € N. Then,
(1) ”‘rn”J = \/E, Tn € J,
(i) D({zn}) = 2v3 < A({x,}) = 21/5.

LEMMA 2.1. If z, =y /|lynll, @ = lim lynll 7 0, then
1
D)) = LDy

LEMMA 2.2. Let M > 0. Then the following statements are equiva-
lent:

(a) M -limsup ||z, — z|| < A({z,}) for any 1, —  (not strongly

convergent ).
(b) M -limsup ||z}, —2'|| < D({z1}) for any 27, — z' (not strongly

convergent ).

As a direct consequence of Lemma 2.2 and (%), we give some sharp
expressions of WC'S(X) which improves the results due to Zhang [47].
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THEOREM 2.1.

WCS(X) :sup{M tr, —u =M limsup|z, —ul| < D({xn})}

o DUed
- f{{r(u,{xn})‘

{zn} weakly (not strongly) converges tou}
:inf{D({:z:n}) {z,} C S(X) and z, — 0},

where S(X) denotes the unit sphere of X, ie., S(X) ={z € X : ||z|| =
1}.

Jiménez-Melado [21] has defined a geometrical coefficient 3(X) for a
Banach space X, i.e.,

B(X) = inf{D({:z:n}) : 2, — 0 and lim ||, = 1}

and he has shown that if 3(X) > 1 then X has property (T). As a
direct consequence of Theorem 2.1, we obtain the following result due
to Benavides-Acedo-Xu [5].

CoROLLARY 2.1. WCS(X) = 5(X).

3. Fixed point theorems

Recall that the modulus of convezity of X is the function é : [0,2] —
[0,1] defined by

Tty

0(e) = inf{1 — || 5

= el lyll < 1)l =yl = €}

The characteristic of convezity of X is the number £4(X) = sup{e :
6(¢) = 0}. It is easy to see that X is uniformly convez iff ¢o(X) = 0;
uniformly nonsquare iff ¢9(X) < 2; and strictly convez iff 6(2) = 1. We
say that T : H — H satisfies Goebel’s Lipschitz condition if

IT(z) = T(y)ll < kllz -yl
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for all r,y € H, where k satisfies the condition

(1-6(=)) <1.

b | o
>~ o

Note that this condition always holds if k < 2.

Recall that F C K C X, then F is said to be a I-local retract of K if
every family {B, : ¢ € I} of closed balls centered at points of F has the
property:

(ﬂ,‘eIB,‘) NK # ) — (NigrBi) N F # 0.

This concept is due to Khamsi [26,27] who used it to prove the exis-
tence of common fixed points for commuting families of nonexpansive
mappings in more general context. He proved in [27] that F is a 1-local
retract of K if and only if F is a nonexpansive rotract of F U {z}, for
every ¢ € KA, where A C X means a nonezpansive retract of X if there
exists a nonexpansive map 7 : X — 4 such that r, = I. It is easy to see
that a 1-local retract of a convex set is metrically convex, and a 1-local
retract of a closed set must itself be closed. It is well-known that if F
1s a nonexpansive retract of K, then it is a 1-local retract of & but not
conversely.

The following, which is less immediate, basically follows the argument
of Goebel [14]. For more detail proof, see [31].

LEMMA 3.1. Let H be a nonempty subset of a Banach space X, and
suppose H is a 1-local retract of ¢o(H). Suppose T : H — H satisfies
Gobel’s Lipschitz condition, and T? = I. Then T has a fixed point,

Let R, be the set of nonnegative real numbers and let ® be the family
of continuous functions ¢ : R3 — Ry satisfying the following properties:

(1) ¢(1,1,1) =k < 2,

(ii) for s > 0, t > 0, the inequality s < ¢(¢,2t, s implies that s < ht
for some h € [k, 2) (See [2], [10]).

Recall that a mapping T : K — K is called an involution if T? — I,
where I denotes the identity map. With mimicking the proof of Lemma
3.1, we also have the following:
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THEOREM 3.1. Let X be a Banach space, let H be a nonempty 1-
local retract of to(H). If T : H — H is an involution map satisfying

Tz — Tyl < é(llz — yll, lz — Tzl llv — Tyl)
for all x,y € H and some ¢ € ®, then T has a fixed point in H.

Let {ny} be an ultra subnet on N. Let C be a weakly compact subset
of a Banach space X and let T : C' — C be a mapping such that for each
x € C,

Tme(z) — S(z).

It is easy to show that if T : C — C is a mapping of an.t. then
S : C — C i1s nonexpansive. Obviously, Fiz(T) C Fix(S), where Fiz(T)
denotes the set of all fixed points of T. Furthermore, if X has weak
normal structure, by classical fixed point theorem of Kirk, Fiz(S) # 0.
Now we will present a sufficient condition for which Fix(S) C Fiz(T).
For the proof of the following lemma, see the lemina 3.1 of [29].

LEMMA 3.2. Let C be a weakly compact convex subset of a Banach
space X with WCS(X) > 1. Let T : C — C be a continuous mapping of
a.n.t. and weakly asymptotic regular on C. Then Fiz(T) = Fiz(S) # §.
Further it is a nonexpansive retract of C'.

Combined with Theorem 3.1, this yields the following result.

THEOREM 3.2. Let C be a weakly compact convex subset of a Banach
space X with WCS(X) > 1. Let T : C — C be a mapping such that
T? is both a.n.t. and weakly asymptotic regular on C. If T : C — C is
an involution map satisfying

1Tz — Tyl < é(llz - yll, [l — Tz, lly — Tyll)

for all z,y € C and some ¢ € ®, then T has a fixed point in C.

PROOF. By Lemma 3.2, H := Fiz(T?) is a nonempty nonexpansive
retract of C. It is obvious that T : H -— H and that all assumptions of
Theorem 3.1 are fulfilled. Therefore Fix(T) # 0. O

Here we give an example of a mapping which is k-lipschitzian involu-
tion but not of a.n.t.
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EXAMPLE. Let X = R, C = [~+.1], where 1 < k < 2. Define a
mapping T : C — C by

T(z) {—%1‘, H0<z<1;
z) =

~kz f-i<z<o

Then it is obvious that T is a uniformly k-lipschitzian involution mapping
but it is not of a.n.t. Indeed, for r = 0,

limsupsup{|T"(y)] ]y € [~.1])

n-—o0

= sup{|T(w)| — Iyl - y € [~7.1]}

= sup{(k —1)jy|: = < y <0}

0.

Ead ot Y R
V

= (k= 1)(p) =1~

4. Some questions

Recall that a Banach space X has the semi-Opial property (semi-Q)
[35] if for any bounded nonconstant sequence {za} with lim, .o ||z, —

Znti1|| = 0 there exists a subsequence {z,, } such that Tn, — r and
(semi-Q) klirn |z — 2, < diam{z,}.
—+ 00

The following spaces have the semi-Opial property.

(1) X is reflexive and it has Opial’s property (40}, i.e., for any weakly
null sequence {z,},

(0)  liminf ||z, <liminf ||z + z,| for every t(#0) € X.

(2) X has (UNS).
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(3) X is nearly uniformly convex (NUC) [20], i.e., for Ve >0, 36 > 0
such that

(NUC) [ llzall <1, sep({zn}) > € = co({zn} N B1-5(0) # 0 |,
where B, (0) = {z € X : ||z|| £ 1} for r > 0.

Note that X is (NUC) iff it is reflexive and has a (UKK) norm.

Let sep({z,}) = inf{||z,, — 2| : n # m}. A Banach space X is
said to have Kadec-Klee (KK) norm if for every sequence {z,} in X the
following implication holds:

(KK) [ lzn]| <1, sep({zr}) >0 and z, —z=|lz| <1 ]

In other words, (weak convergence)=- (norm convergence) on the unit
sphere of X, i.e., {x € X :||z|| = 1}. The norm of X is said to be (UKK)
(uniformly Kadec-Klee) if Ve > 0, 3 § > 0 such that

(UKK) [ lznll <1, sep({zn}) > € and z, — 2 = ||z|| <1-6 |,

where sep({z,}) ;= inf{||zp, — zm|| : n # m} > ¢ “e-separate sequence”.
The norm of X is said to be (WUKK) (weakly uniform Kadec-Klee) [11]
if 3 €, § >0 such that

(WUKK) [ |lzn|| €1, sep({zp})>€cand o, —z=>||z|| <1-6 ],

(4) (Baillon-Schoneberg [4]) X = Xg, where 1 < 8 < 2, X3 =
2%, ll),
2]l s = max(l|z (|2, Bl[z]} )
for z € £?. Note that
(i) Xgis (UNS)if 1 < 8 < V2.
(ii) Xg is (ANS) if 1 < B < 2.
(iii) X s fails to have (NS).

(5) X is the James quasi-reflexive space.

The following proposition gives an interesting result concerning min-
imal sets:
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PROPOSITION ([1]). Let a : K — R, be a lower semicontinuous
convex function. Assume that a(Tr) < a(z) for all v € K. Then « is a
constant function.

LEMMA 4.1 (GOEBEL [16]-KARLOVITZ [24,23]). Let T be nonex-
pansive. Let K be a weakly compact convex subset which is minimal
invariant under T. Let {z,} be a sequence of approximate fixed points,
ie,z, € K and [Tz, — 2,)| — 0. Then for each r € K,

lim ||z — z,| = diam(K).

QUESTION (I). Does Geobel-Karlovitz lemma hold for any asymp-
totically nonexpansive mapping T 7

To compete the proof of Lemma, we define a(z) = lim sup, . ||n —
z|| for z € K. Since {z,} is a sequence of approximate fixed points for
T, it follows that a(Tx) < a(z) for all € K. By above proposition, «
must be a constant function.

THEOREM 4.2. (semi-O) = (FPP:N).
PRrROOF. For fixed a A € (0,1). we set
Sxyi= AL+ (1 - MT,

where I is the identity operator of X. Then it is obvious that Sy : C — C
1s nonexpansive with the same fixed point set of T Moreover, it is well-
known that Sy is asymptotically regular on C (see [13]). Then, by Zorn’s
lemma there exists a nonempty weakly compact convex subset K of C
which is invariant under Sy. Suppose that diam(£’) > 0. Let v, € K.
Taking x,, := S%z, in Lemma 4.1, for each z € K.

lim ||z — z,|| = diam(K).
n— o

On the other hand, by the semi-Opial propercy of X, there exists a
subsequence {z,, } of {x,} such that w-klim Tn, =z and
—+00

klim |2n, — 2| < diam({z,}) < diata(K),

which gives a contradiction. Hence, diam(A’) = 0 and so S, has a fixed
point in K. [J
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QUESTION (II). Does Theorem 4.2 hold for any asymptotically non-
expansive mapping T 7

We say that a Banach space X has the uniform Opial’s property (UO)
[39] if for any ¢ > 0, there exists r > 0 such that

(UO) 1+ 7 <liminf ||z + z,]|]

for every + € X with |lz|| > ¢ and any sequence {z,} with z, —
O, liminf, ||z.| > 1.

We say that X has the local uniform Opial’s property (LUO) [39]
if for any ¢ > 0 and for any weakly null sequence {z,} in X with
liminf, ||z,|| > 1, there exists r > 0 such that

(LCO) 1+ r <liminf ||z + z,|| forall z € X with ||z] > ¢

THEOREM 4.3 ([45]). If X has (UO), then (FPP) holds for any con-
tinuous mapping of a.n.t.
Note that the following implications hold:

(UC)+(0) [7’=>45] (TO) = (LUO) =

0) B (semi-0) (TR 42) ppp )

where (R) means the reflexivity of X.

QUESTION (III). Let X have the property (O). Does (FPP) hold for

any asymptotically nonexpansive mapping T 7
For every =,y € X and nonnegative real number A, we set
1
M(z,y) = {= € X :max{|lz — all. lz —yll} < 5(1+ Nz = vll}.

If A is a bounded subset of X, we define |A| = sup{||z|| : = € A}. For

any sequence {z,} in X and any nonnegative real number A, we set

Ax({zn}) = limsup(limsup [My(zn. zm)|)-

n—oo m—0oC
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A Banach space X is called orthogonally conver (OC) [22,23] if for any
weakly null sequence {z,} with D({z,}) > 0,

(0C) 3 XA > 0 such that Ax({z,}) < D(-z,}).

Note also that the following implications hold:

(22] 32]

(0C) =5 (FPP:N) £2 (WNS).

The following spaces have (OC) property:

(1) X is a Banach space with the Schur property, and so is £'.
(2) (UC) = (0C).

(3) ¢, and c.

(4) The James quasi-reflexive space is (OC).

(5) (Dulst [11]) The space VD = (¢2,]| -||) is (OC), where

]l —maX{—Hw\z, supll )+ z(n) + 2(n+ 1)}

forallz =3">°  z(n)e, € £

QUESTION (IV). What is the relation betweer: WCS(X) > 1 and
(0C) ?

QUESTION (V). Let X =(0OC). Does (FPP) hold for any asymptoti-
cally nonexpansive mapping T 7

Finally recall a generalization of uniformly convex Banach spaces
which is due to Sullivan [42]. Let ¥ > 1 be an integer. Then a Ba-
nach space X is said to be k-(UR) (k—um'formly rotund) if given any
e > 0, there exists 6(¢) > 0 such that if {zy,-- ,zx4+1} C Bx, the
closed unit ball of X, satisfies V(z, - - ,zx41) > €, then ||( Zk+] z;)/
(k+1)|| <1—6(e). Here V(zy, -+ ,xx41) is the voiume enclosed by the
set {1, -, Tky1}, L€,

1 1
filzy) ... filzrsr)

Viey, k) =supq | S

fel@) oo falzean)
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where the supremum is taken over all f;,- -, fx € Bx+. The modulus
of k-uniform rotundity of X is the function 6&?(-) defined by

k+1

>

=1

1

k) )
5& (e):mf{l—k—_l_l

) EBX. V(.Cl,"' ,.Tk+]) 26}

Then it is seen that X is k-(UR) if and only if 6;“(5) > 0 for € > 0.

It is now known that the following implications hold:

(NUC) [ng] < k=(UR)---«<2-(UR)«< 1—-(UR) <= (UC)
4

(UKK) = (WUKK) 12 (WNS) 32 (FPP:N)
Y

(KK).

Recall that a Banach space X is said to satisty Lim’s condition (L)
[37] if there exists a function § : Rt x Rt — Rt with the following
properties;

(a) &(r, s) is continuous and strictly increasing in each variable,

(b) If 2, — 0 and lim|[z,|| = s > 0, then

lim |ly — z.|| = 8(||y|l,s) for every y € X.
Khamsi [28] showed that a Banach space X having a weakly contin-
uous duality map (or more generally, Lim’s condition (L)) satisfies the

uniform Opial condition. For more details, see [28]. Here, we have the
following implications:

(J=WSC) = (L) 28] (UO) = (LUO) = (0),
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k-(TR)+(0O) gg*] (LUO),

[8.45]

(UC)+(0) '== (UO)=> (LUO) = (O) ®) (semi-0) = (FPP:N).

10.

11.

12.

Recently, Xu [45] raised the following question.
QUESTION (VI). For k > 1, k-(UR)+(0) = (UO) ?
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