• 제목/요약/키워드: water distribution, optimization

Search Result 133, Processing Time 0.031 seconds

Waveguide Applicator System for Head and Neck Hyperthermia Treatment

  • Fiser, Ondrej;Merunka, Ilja;Vrba, Jan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1744-1753
    • /
    • 2016
  • The main purpose of this article is a complex hyperthermia applicator system design for treatment of head and neck region. The applicator system is composed of four waveguides with a stripline horn aperture and circular water bolus. The specific absorption rate (SAR) and temperature distribution from this applicator in various numerical phantom models was investigated. For used targets, the treatment planning based on the optimization process made through the SEMCAD X software is added to show the steering possibilities of SAR and thereby temperature distribution. Using treatment planning software, we proved that the SAR and temperature distribution can be effectively controlled (by amplitude and phase changing) improving the SAR and temperature target coverage approximately by 20 %. For the proposed applicator system analysis and quantitative evaluation of two parameters 25 % iso-SAR and $41^{\circ}C$ iso-temperature contours in the treatment area with the respect to sensitive structures in treatment area were defined. To verify our simulation results, the real measurement of reflectivity coefficient as well as the temperature distribution in a homogenous phantom were performed.

Parameter Identification of an unconfined Aquifer (피압 대수층의 전달경수 동정)

  • Lee, Jae-Hyeong;Park, Yeong-Gi;Hwang, Man-Ha
    • Water for future
    • /
    • v.17 no.4
    • /
    • pp.303-310
    • /
    • 1984
  • One of the delicate problems in aquifer problems in aquifer management is the identification of the spatial distribution of the hydrological parameters. To determine the distribution of the transmissivity in a aquifer, several data are available; the local values of transmissivity around well, interference tests, some knowledge of geological structure. All this information has to be combined to find a plausible representation of the aquifer. According to a three phased optimization process calculation is carried out; geostatistical estimate of the parameter field on the basis of known well point values adjustable on a limited numerical model, and modification of the values ot pilot points by a minimization algorithm. This procedure, applied to a known case, has proved to be very useful.

  • PDF

An Indirect Approach Determining Parameters of Clark's Model Based on Model Fitting to the Gamma Distribution function (Gamma분포형 함수 적합을 이용한 Clark 모형의 매개변수 간접추정)

  • Seong, Kee-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.223-235
    • /
    • 2003
  • An indirect or supplementary approach is proposed for determining the parameters of the Clark's model in order to improve existing defect in estimating the parameters. The gamma-distribution type function is employed to represent the Clark's model, which takes the same form as the Nash's model, so that parameter estimation is not difficult since it can be performed with a simple optimization process. Analytic forms of Clark's models parameters are introduced using parameters of the proposed methodology to give traditional form of Clark's. An application to a watershed has shown that the proposed approach can preserve the properties of observed data. Based the application, the new approach is recommended as an alternative to the existing parameter estimating methodology.

The Evaluation of Performance Limiting Factors for the Optimization of Drinking Water Treatment (정수장 최적화를 위한 성능제한인자 평가에 관한 연구)

  • Kim, Jeong Hyun;Bae, Chul Ho;Park, No Suk;Moon, Yong Taik;Lee, Sun Ju;Kown, Soon Buhm;Ahn, Hyo Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.78-91
    • /
    • 2005
  • Performance limiting factors (PLFs) derived from 161 drinking water treatment plants (DWTPs), assessed by International Technical Diagnosis & Assistance Center, were analyzed and evaluated in more detail in this study. In order to conduct study, 161 DWTPs were divided into five categories depending on their capacity, and into twelve groups according to processes and facilities. From the results of analysis, PLFs and their distribution ratio derived from each category were significantly different. Filtration was the most important performance limiting process in all DWTPs of five categories, and the PLFs in filtration were backwashing velocity, media configuration, bed depth, and formation of mud-ball. The PLFs in coagulation-flocculation process were found out to be coagulant dosage, mixing speed, mechanical problems, and others in the order of frequency of occurrence. Also, insufficient disinfection ability that is resulted from insufficient hydraulic detention time and improper chlorine dose and injection point, is the most significant among PLFs in a clear well. In the case of sedimentation, inappropriate baffle structure and excessive upward velocity were PLFs. In addition, the results showed that high turbid water and low alkalinity in a rainy season, ferric and manganese ions, and ammonia nitrogen have been contributed significantly on the performance of DWTPs.

A study on the distribution characteristics of Jeju Island basin rain gauge by altitude through optimization technique (최적화 기법을 통한 제주도권역 강우관측소의 고도별 분포특성 검토)

  • Tae Rim Kim;Hyeok Jin Lim;Chi Young Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.352-352
    • /
    • 2023
  • 본 연구에서는 제주도권역 강우관측소의 고도별 공간분포의 적정성을 평가하기 위한 방안으로 고도별 강우관측소의 최근린지수(Nearest Neighbor Index, NNI)를 산정하고 현재 강우관측소 공간분포의 적정성을 평가하였다. 또한, 제주도권역을 고도에 따라 등면적으로 구분하고, 고도마다 상이한 지형조건을 고려하기 위해 등면적으로 구분된 각 강우관측소의 최대 NNI를 최적화 기법의 하나인 화음탐색법(Harmony Search, HS)을 이용하여 산정하였다. 이와같이 현재 강우관측소설치위치를 기준으로 산정한 NNI와 HS를 이용하여 산정한 최대 NNI의 차이를 바탕으로 지형적인 특성을 고려한 제주도권역 강우관측소 분포를 비교·검토하였다. 그 결과 고도가 높아짐에 따라 강우관측소의 개수가 낮은 고도에 비해 상대적으로 적어 관측소 밀도가 작은 것으로 산정되었다. 향후 제주도권역 강우관측소의 지형적인 특성을 반영한다면 보다 효율적인 제주도권역 강우량관측이 가능할 것으로 판단된다.

  • PDF

Stochastic Optimization Approach for Parallel Expansion of the Existing Water Distribution Systems (추계학적 최적화방법에 의한 기존관수로시스템의 병열관로 확장)

  • Ahn, Tae-Jin;Choi, Gye-Woon;Park, Jung-Eung
    • Water for future
    • /
    • v.28 no.2
    • /
    • pp.169-180
    • /
    • 1995
  • The cost of a looped pipe network is affected by a set of loop flows. The mathematical model for optimizing the looped pipe network is expressed in the optimal set of loop flows to apply to a stochastic optimization method. Because the feasible region of the looped pipe network problem is nonconvex with multiple local optima, the Modified Stochastic Probing Method is suggested to efficiently search the feasible region. The method consists of two phase: i) a global search phase(the stochastic probing method) and ii) a local search phase(the nearest neighbor method). While the global search sequentially improves a local minimum, the local search escapes out of a local minimum trapped in the global search phase and also refines a final solution. In order to test the method, a standard test problem from the literature is considered for the optimal design of the paralled expansion of an existing network. The optimal solutions thus found have significantly smaller costs than the ones reported previously by other researchers.

  • PDF

Optimization of Booster Disinfection Scheduling in Water Distribution Systems using Artificial Neural Networks (인공신경망을 이용한 상수관망 염소 재투입 스케줄링 최적화)

  • Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.18-18
    • /
    • 2018
  • 상수관망 시스템(Water Distribution System, WDS)은 이용자에게 양질의 상수도를 공급하기 위해 구축된 사회기반시설물로써, 정수된 물이 사용처에 도달하기까지 송수과정에서 발생 가능한 수질저하를 고려해야 한다. 일반적으로 정수장에서 염소처리를 한 후, 도달시간을 고려한 시스템 내 잔류 염소농도를 유지함으로써 수질저하를 예방한다. 여기서 상수도 내 잔류 염소농도는 미생물 번식 및 관내 부식물 등 다양한 생물 화학적 오염을 효과적으로 예방하는 반면, 과다할 경우 이용자의 음용성을 저해할 수 있어 시스템 전반에 걸쳐 염소농도의 적절한 관리가 요구된다. 특히, 상수관망에서는 공급경로 및 공급량에 따라 각 수요처의 도달 염소농도가 다르게 분포할 수 있으므로, 시설운영자는 균등하고 적절한 염소농도를 유지하기 위해 추가적인 염소 재투입시설을 설치하여 함께 관리하고 있다. 이 때, 염소투입 시설의 운영계획은 EPANET과 같은 상수관망 해석모형의 수질모의를 바탕으로 수립된다. 그러나 일반적으로 수질모의는 수리해석과는 달리 긴 시간이 소요되는 단점이 존재한다. 본 연구에서는 이러한 단점을 개선하기 위해, 특정 네트워크의 수질모의 결과를 학습시킨 인공신경망(ANN) 모형을 구축하고 이를 이용하여 상수관망 수질모의 계산시간을 단축하고자 하였다. 여기서 ANN모형의 학습은 EPANET을 통해 미리 선정된 다양한 염소 투입지점의 염소 투입농도와 용수 공급량 자료, 그리고 주요 관측지점에서 측정된 염소농도자료를 이용하였다. 학습된 ANN모형을 EPANET 수질모의 결과와 비교 및 검증을 실시한 결과, 사전에 소요된 학습시간을 제외하면 수질모의 소요시간 측면에서 큰 개선효과를 보였으며, 대표지점에서의 수질모의 결과가 유사하였다. 추가적으로, 본 연구에서는 학습된 ANN모형과 최적화 알고리즘인 GA(Genitic Algorithm)를 연계하여 상수관망에서의 염소 재투입 스케줄링을 최적화하는 프로그램을 개발함으로써, 안전하고 경제적인 상수관망의 수질운영에 기여하고자 하였다.

  • PDF

Uncertainty Assessment of Single Event Rainfall-Runoff Model Using Bayesian Model (Bayesian 모형을 이용한 단일사상 강우-유출 모형의 불확실성 분석)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Lee, Jong-Seok;Na, Bong-Kil
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.505-516
    • /
    • 2012
  • The study applies a hydrologic simulation model, HEC-1 developed by Hydrologic Engineering Center to Daecheong dam watershed for modeling hourly inflows of Daecheong dam. Although the HEC-1 model provides an automatic optimization technique for some of the parameters, the built-in optimization model is not sufficient in estimating reliable parameters. In particular, the optimization model often fails to estimate the parameters when a large number of parameters exist. In this regard, a main objective of this study is to develop Bayesian Markov Chain Monte Carlo simulation based HEC-1 model (BHEC-1). The Clark IUH method for transformation of precipitation excess to runoff and the soil conservation service runoff curve method for abstractions were used in Bayesian Monte Carlo simulation. Simulations of runoff at the Daecheong station in the HEC-1 model under Bayesian optimization scheme allow the posterior probability distributions of the hydrograph thus providing uncertainties in rainfall-runoff process. The proposed model showed a powerful performance in terms of estimating model parameters and deriving full uncertainties so that the model can be applied to various hydrologic problems such as frequency curve derivation, dam risk analysis and climate change study.

Application of modified hybrid vision correction algorithm for an optimal design of water distribution system (상수관망 최적설계를 위한 Modified Hybrid Vision Correction Algorithm의 적용)

  • Ryu, Yong Min;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.475-484
    • /
    • 2021
  • The optimal design for water distribution system (WDS) is not only satisfying the minimum required water pressure of the nodes, but also minimizing pipe cost, etc. The number of designs of WDS increases exponentially due to the arrangement of various pipes. Various optimization algorithms were applied to propose an optimized design of WDS. In this study, Modified Hybrid Vision Correction Algorithm (MHVCA) with improved self-adapting parameter was applied to optimal design of WDS. The performance was improved by changing the Hybrid Rate (HR) of the existing Hybrid Vision Correction Algorithm (HVCA) to nonlinear HR. To verify the performance of the proposed MHVCA, it applied to mathematical problems consisting of 2 and 30 decision variables and constrained mathematical problems. In order to review the application results of MHVCA, it was compared with Harmony Search (HS), Improved Harmony Search (IHS), Vision Correction Algorithm (VCA) and HVCA. Finally, MHVCA was applied to the optimal design problem of WDS and the results were compared with other algorithms. MHVCA showed better results than other algorithms in mathematical problems and WDS problem. MHVCA will be able to show good results by applying to various water resource engineering problems as well as problems applied in this study.

Performance optimization of 1 kW class residential fuel processor (1 kW급 가정용 연료개질기 성능 최적화)

  • Jung, Un-Ho;Koo, Kee-Young;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.731-734
    • /
    • 2009
  • KIER has been developed a compact and highly efficient fuel processor which is one of the key component of the residential PEM fuel cells system. The fuel processor uses methane steam reforming to convert natural gas to a mixture of water, hydrogen, carbon dioxide, carbon monoxide and unreacted methane. Then carbon monoxide is converted to carbon dioxide in water-gas-shift reactor and preferential oxidation reactor. A start-up time of the fuel processor is about 1h and CO concentration among the final product is maintained less than 5 vol. ppm. To achieve high thermal efficiency of 80% on a LHV basis, an optimal thermal network was designed. Internal heat exchange of the fuel processor is so efficient that the temperature of the reformed gas and the flue gas at the exit of the fuel processor remains less than $100^{\circ}C$. A compact design considering a mixing and distribution of the feed was applied to reduce the reactor volume. The current volume of the fuel processor is 17L with insulation.

  • PDF