• Title/Summary/Keyword: voltage-current characteristics

Search Result 3,701, Processing Time 0.04 seconds

Current-voltage Characteristics of PTC Ceramics by Changing Donor Concentration and Specimen Thickness (Donor 첨가량과 시편두께에 따른 PTC 세라믹스의 전류-전압 특성)

  • 한응학;강영석;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.619-625
    • /
    • 1991
  • The current-voltage characteristics of the semiconducting BaTiO3 ceramics are measured in the range of 0.01∼100 Volt. Non ohmic behavior was observed above Tc. This behavior is not dependent on specimen thickness and is not observed at the incomplete semiconducting sepcimen. From this experiment, non-ohmic behavior of PTC is attributed to Heywang's potential barrier not to space change limited current. In the low voltage range, current-voltage characteristics of PTC ceramics can be explained by Heywang model.

  • PDF

Characteristics of Erbium silicided n-type Schottky barrier tunnel transistors (Erbium 실리사이드를 이용하여 제작한 n-형 쇼트키장벽 관통트랜지스터의 전기적 특성)

  • Moongyu Jang;Kicheon Kang;Sunglyul Maeng;Wonju Cho;Lee, Seongjae;Park, Kyoungwan
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.779-782
    • /
    • 2003
  • The theoretical and experimental current-voltage characteristics of Erbium silicided n-type Schottky barrier tunneling transistors (SBTTs) are discussed. The theoretical drain current to drain voltage characteristics show good correspondence and the extracted Schottky barrier height is 0.24 eV. The experimentally manufactured n-type SBTTs with 60 nm gate lengths show typical transistor behaviors in drain current to drain voltage characteristics. The drain current on/off ratio is about 10$^{5}$ at low drain voltage regime in drain current to gate voltage characteristics.

  • PDF

Current Limiting and Voltage Sag Compensation Characteristics of Flux-Lock Type SFCL Using a Transformer Winding (변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 및 전압강하 보상 특성)

  • Ko, Seok-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1000-1003
    • /
    • 2012
  • The superconducting fault current limiter (SFCL) can quickly limit the fault current shortly after the short circuit occurs and recover the superconducting state after the fault removes and plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the flux-lock type SFCL with an isolated transformer, which consists of two parallel connected coils on an iron core and the isolated transformer connected in series with one of two coils, has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. The current limiting and the voltage sag compensating characteristics of a SFCL using a transformer winding were analyzed. Through the analysis on the short-circuit tests results considering the winding direction of two coils, the SFCL designed with the additive polarity winding has shown the higher limited fault current than the SFCL designed with the subtractive polarity winding. It could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

Analysis on Current Limiting and Voltage Sag Compensating Characteristics of a SFCL using Magnetic Coupling of Parallel Connected Two Coils (병렬연결된 두 코일의 자기결합을 이용한 초전도 전류제한기의 전류제한 및 전압강하 보상 특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.159-163
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the SFCL using magnetic coupling of two coils with parallel connection has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. In this paper, the current limiting and the voltage sag compensating characteristics of a SFCL using magnetic coupling of parallel connected two coils were analyzed. Through the analysis on the experimental results considering the winding direction of two coils, the SFCL designed with the additive polarity winding was shown to have the higher limited fault current than the SFCL designed with the subtractive polarity winding. In addition, it could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

Current and voltage characteristics of inverted staggered type amorphous silicon thin film transistor by chemical vapour deposition (CVD증착에 의한 인버티드 스태거형 TFT의 전압 전류 특성)

  • 이우선;박진성;이종국
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1008-1012
    • /
    • 1996
  • I-V, C-V characteristics of inverted staggered type hydrogenerated amorphous silicon thin film transistor(a-Si:H TFT) was studied and experimentally verified. The results show that the log-log plot of drain current increased by voltage increase. The saturated drain current of DC output characteristics increased at a fixed gate voltage. According to the increase of gate voltage, activation energy of electron and the increasing width of Id at high voltage were decreased. Id saturation current saturated at high Vd over 4.5V, Vg-ld hysteresis characteristic curves occurred between -15V and 15V of Vg. Hysteresis current decreased at low voltage of -15V and increased at high voltage of 15V.

  • PDF

Design and Analysis of 20 W Class LED Converter Considering Its Control Method (제어 방식에 따른 20 W급 LED Converter 설계 및 분석)

  • Jeong, Young-Gi;Kim, Sung-Hyun;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.53-57
    • /
    • 2012
  • In this paper, by designing 20 W class driving circuit for driving high-power LED (Light Emitting Diode), we are going to comparatively carry out the analysis of characteristics for power circuit according to each design method. In this case, 200 V 60 Hz was performed as input data. The electrical characteristics such as voltage, current and ripple are checked for constant current circuit and constant voltage circuit in the LED module. In addition, as the ripple has an influence on illumination of LED light, low temperature working (-20 [$^{\circ}C$]) and high temperature working(80 [$^{\circ}C$]) are measured to make sure the ripple characteristics in accordance with temperature. In low temperature operation -20 [$^{\circ}C$] measurements, both constant current circuit and constant-voltage circuit were less impacted on input fluctuation, whereas in the high temperature operation 80 [$^{\circ}C$], current voltage in constant voltage circuit was surge after 430 [hour]. Voltage current ripple of constant current circuit was much less than constant voltage circuit, therefore we can show that constant current circuit is more stable.

A Fuzzy-PI Control Scheme of the Three-Phase Z-Source PWM Rectifier without AC-Side Voltage and Current Sensors (교류측 전압 및 전류 센서가 없는 3상 Z-소스 PWM 정류기의 퍼지-PI 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.767-781
    • /
    • 2013
  • In this paper, we proposes the AC input voltage and current sensorless control scheme to control the input power factor and DC output voltage of the three-phase Z-source PWM rectifier. For DC-link voltage control which is sensitive to the system parameters of the PWM rectifier, fuzzy-PI controller is used. Because the AC input voltage and current are estimated using only the DC-link voltage and current, AC input voltage and current sensors are not required. In addition, the unity input power factor and DC output voltage can be controlled. The phase-angle of the detected AC input voltage and estimated voltage, the response characteristics of the DC output voltage according to the DC voltage references, the FFT results of the estimated voltage and current, efficiency, and the response characteristics of the conventional PI controller and fuzzy-PI controller are verified by PSIM simulation.

Comparison of Current-Voltage Characteristics by Doping Concentrations of Nanosheet FET and FinFET (Nanosheet FET와 FinFET의 도핑 농도에 따른 전류-전압 특성 비교)

  • Ahn, Eun Seo;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.121-122
    • /
    • 2022
  • In this paper, the device performance with the structure of Nanosheet FET (NSFET) and FinFET is simulated through a three-dimensional device simulator. Current-voltage characteristics of NSFET and FinFET were simulated with respect to channel doping concentrations, and the performance such as threshold voltage and subthreshold swing extracted from the current-voltage characteristics was compared. NSFET flows more drain current and has a higher threshold voltage in current-voltage characteristics depending on channel doping concentration than that of FinFET. The subthreshold voltage swing (SS) of NSFET is steeper than that of FinFET

  • PDF

Comparison of Current-Voltage Characteristics of Nanosheet FET and FinFET (Nanosheet FET와 FinFET의 전류-전압 특성 비교)

  • Ahn, Eun Seo;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.560-561
    • /
    • 2022
  • In this paper, current-voltage characteristics of various types of Nanosheet FET (NSFET) and FinFET are simulated with 3D device simulator. The threshold voltage and subthreshold swing extracted from the simulated current-voltage characteristics of NSFET and FinFET were compared. Both of threshold voltage and drain current of NSFET are higher than those of FinFET. The subthreshold voltage swing (SS) of NSFET is steeper than that of FinFET.

  • PDF

Analysis on Current Limiting Characteristics of a Fault-lock Type SFCL Applied into a Simulated Power System (모의전력계통에 적용된 자속구속형 초전도 전류제한기의 전류제한 특성 분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.141-146
    • /
    • 2011
  • When the current of the superconducting element exceeds its critical current by the fault occurrence, the quench of the high-$T_C$ superconducting fault current limiter (HTSC) comprising the flux-lock type superconducting fault current limiter (SFCL) occurs. Simultaneously, the magnetic flux in the iron core induces the voltage in each coil, which contributes to limit the fault current. In this paper, the fault current limiting characteristics of the flux-lock type SFCL as well as the load voltage sag suppressing characteristics according to the flux-lock type SFCL's winding direction were investigated. To confirm the fault current limiting and the voltage sag suppressing characteristics of the this SFCL, the short-circuit tests for the simulated power system with the flux-lock type SFCL were carried out. The flux-lock type SFCL designed with the additive polarity winding was shown to perform more effective fault current limiting and load voltage sag suppressing operations through the fast quench occurrence right after the fault occurs and the fast recovery operation after the fault removes than the flux-lock type SFCL designed with the subtractive polarity winding.