• Title/Summary/Keyword: voltage gain

Search Result 1,019, Processing Time 0.028 seconds

Active Frequency Drift Positive Feedback Method for Anti-islanding using Digital Phase-Locked-Loop (디지털 위상검출기법을 적용한 능동적 주파수 변화 정궤환기법)

  • Lee, Ki-Ok;Young, Young-Seok;Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;Ko, Moon-Ju
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.37-44
    • /
    • 2007
  • As photovoltaic(PV) power generation system becomes more common, it will be necessary to investigate islanding detection method for PV systems. Islanding of PV systems can cause a variety of problems and must be prevented. However, if the real and reactive power of the load and PV system are closely matched, islanding detection by Passive methods becomes difficult. Also, most active methods lose effectiveness when there are several PV systems feeding the same island. The active frequency drift positive feedback method(AFDPF) enables islanding detection by forcing the frequency of the voltage in the island to drift up or down. In this paper the research for the minimum value of chopping fraction gain applied digital phase-locked-loop (DPLL) to AFDPF considering output power quality and islanding prevention performance are performed by simulation and experiment according to IEEE Std 929-2000 islanding test.

An I-V Circuit with Combined Compensation for Infrared Receiver Chip

  • Tian, Lei;Li, Qin-qin;Chang, Shu-juan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.875-880
    • /
    • 2018
  • This paper proposes a novel combined compensation structure in the infrared receiver chip. For the infrared communication chip, the current-voltage (I-V) convert circuit is crucial and important. The circuit is composed by the transimpedance amplifier (TIA) and the combined compensation structures. The TIA converts the incited photons into photocurrent. In order to amplify the photocurrent and avoid the saturation, the TIA uses the combined compensation circuit. This novel compensation structure has the low frequency compensation and high frequency compensation circuit. The low frequency compensation circuit rejects the low frequency photocurrent in the ambient light preventing the saturation. The high frequency compensation circuit raises the high frequency input impedance preserving the sensitivity to the signal of interest. This circuit was implemented in a $0.6{\mu}m$ BiCMOS process. Simulation of the proposed circuit is carried out in the Cadence software, with the 3V power supply, it achieves a low frequency photocurrent rejection and the gain keeps 109dB ranging from 10nA to $300{\mu}A$. The test result fits the simulation and all the results exploit the validity of the circuit.

Measurement of Structural Stress Concentration by PVDF Film Sensors (압전필름센서에 의한 구조물의 응력집중의 측정)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Choi, Man-Yong;Lim, Jong-Mook;Kim, In-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.109-119
    • /
    • 2000
  • PVDF film sensor was applied to measure the stress concentration for monitoring the structural integrity. The strain calibration of this film sensor was performed by the bending test of aluminum beam. The PVDF sensor and the electrical strain gage were bonded on the beam. When the beam was loaded, the output of electrical strain gage was compared with the output of the PVDF sensor. The waveform of PVDF sensor output was shown as the same form of the output of electrical strain gage. The gain was determined as 1.7 by comparing these two signals to determine the exact value of the strain. In order to experiment the stress concentration, the stress field was analyzed by finite element analysis. The tensile test of notched steel specimens was conducted to develop the measurement technique of stress concentration. The output voltage ratio between the PVDF sensor near the notch and the PVDF sensor far from the notch could give the information about the load bearing capacity of steel specimen.

  • PDF

The Design of the Feedback Control System of Electromagnetic Suspension Using Kalman Filter

  • Jo, Jeong-Min;Han, Young-Jae;Lee, Chang-Young
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.93-96
    • /
    • 2011
  • The basic element of the EMS suspension is the electromagnet system, which suspends the vehicle without contact by attracting forces to the rails at the guideway. The suspension of a vehicle by attractive magnetic forces is inherently unstable and consequently it is continuously adjusted by the strength of the suspending electromagnet from rail irregularity and bending of the guideway. In order to improve reliable tracking, it needs to get feedback signals without measurement delay time. In this paper the concept of feedback control system with Kalman Filter in EMS is proposed. The input signals in the feedback control system are an air-gap and an acceleration signal. The air-gap signal with noise from the gap sensor is transformed to the filtered air-gap signal y without measurement delay time by using Kalman Filter. The filtered air-gap signal is transformed to a relative velocity and a relative acceleration signal. Then it multiplies these values by gain matrix in order to get the actuator's reference voltage value. The simulation results show that the dynamic responses of the suspension system can be improved by reducing the influence of measurement delay time of air-gap signals.

  • PDF

A Self-Consistent Semi-Analytical Model for AlGaAs/InGaAs PMHEMTs

  • Abdel Aziz, M.;El-Banna, M.;El-Sayed, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.59-69
    • /
    • 2002
  • A semi-analytical model based on exact numerical analysis of the 2DEG channel in pseudo-morphic HEMT (PMHEMT) is presented. The exactness of the model stems from solving both Schrodinger's wave equation and Poisson's equation simultaneously and self-consistently. The analytical modeling of the device terminal characteristics in relation to the charge control model has allowed a best fit with the geometrical and structural parameters of the device. The numerically obtained data for the charge control of the channel are best fitted to analytical expressions which render the problem analytical. The obtained good agreement between experimental and modeled current/voltage characteristics and small signal parameters has confirmed the validity of the model over a wide range of biasing voltages. The model has been used to compare both the performance and characteristics of a PMHEMT with a competetive HEMT. The comparison between the two devices has been made in terms of 2DEG density, transfer characteristics, transconductance, gate capacitance and unity current gain cut-off frequency. The results show that PMHEMT outperforms the conventional HEMT in all considered parameters.

77 GHz Power Amplifier MMIC by 120nm InAlAs/InGaAs Metamorphic HEMT (MMIC by 120nm InAlAs/InGaAs Metamorphic HEMT를 이용한 77 GHz 전력 증폭기 제작)

  • Kim, Sung-Won;Seol, Gyung-Sun;Kim, Kyoung-Woon;Choi, Woo-Yeol;Kwon, Young-Woo;Seo, Kwang-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.553-554
    • /
    • 2006
  • In this paper, 77 GHz CPW power amplifier MMIC, which are consisted of a 2 stage driver stage and a power stage employing $8{\times}50um$ gate width, have been successfully developed by using 120nm $In_{0.4}AlAs/In_{0.35}GaAs$ Metamorphic high electron mobility transistors (MHEMTs). The devices show an extrinsic transconductance $g_m$ of 660 mS/mm, a maximum drain current of 700 mA/mm, and a gate drain breakdown voltage of -8.5 V. A cut-off frequency ($f_T$) of 172 GHz and a maximum oscillation frequency ($f_{max}$) of over 300 GHz are achieved. The fabricated PA exhibited high power gain of 20dB only with 3 stages. The output power is measured to be 12.5 dBm.

  • PDF

Enhanced fT and fMAX SiGe BiCMOS Process and Wideband Power Efficient Medium Power Amplifier

  • Bae, Hyun-Cheol;Oh, Seung-Hyeub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.232-238
    • /
    • 2008
  • In this paper, a wideband power efficient 2.2 GHz - 4.9 GHz Medium Power Amplifier (MPA), has been designed and fabricated using $0.8{\mu}m$ SiGe BiCMOS process technology. Passive elements such as parallel-branch spiral inductor, metal-insulator-metal (MIM) capacitor and three types of resistors are all integrated in this process. This MPA is a two stage amplifier with all matching components and bias circuits integrated on-chip. A P1dB of 17.7 dBm has been measured with a power gain of 8.7 dB at 3.4 GHz with a total current consumption of 30 mA from a 3 V supply voltage at $25^{\circ}C$. The measured 3 dB bandwidth is 2.7 GHz and the maximum Power Added Efficiency (PAE) is 41 %, which are very good results for a fully integrated Medium PA. The fabricated circuit occupies a die area of $1.7mm{\times}0.8mm$.

Design Optimization of Hybrid-Integrated 20-Gb/s Optical Receivers

  • Jung, Hyun-Yong;Youn, Jin-Sung;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.443-450
    • /
    • 2014
  • This paper presents a 20-Gb/s optical receiver circuit fabricated with standard 65-nm CMOS technology. Our receiver circuits are designed with consideration for parasitic inductance and capacitance due to bonding wires connecting the photodetector and the circuit realized separately. Such parasitic inductance and capacitance usually disturb the high-speed performance but, with careful circuit design, we achieve optimized wide and flat response. The receiver circuit is composed of a transimpedance amplifier (TIA) with a DC-balancing buffer, a post amplifier (PA), and an output buffer. The TIA is designed in the shunt-feedback configuration with inductive peaking. The PA is composed of a 6-stage differential amplifier having interleaved active feedback. The receiver circuit is mounted on a FR4 PCB and wire-bonded to an equivalent circuit that emulates a photodetector. The measured transimpedance gain and 3-dB bandwidth of our optical receiver circuit is 84 $dB{\Omega}$ and 12 GHz, respectively. 20-Gb/s $2^{31}-1$ electrical pseudo-random bit sequence data are successfully received with the bit-error rate less than $10^{-12}$. The receiver circuit has chip area of $0.5mm{\times}0.44mm$ and it consumes excluding the output buffer 84 mW with 1.2-V supply voltage.

Design of Inverse Class E 2.9 GHz/5.8 GHz Frequency Multiplier (역 E급 2.9 GHz/5.8 GHz 주파수 체배기 설계)

  • Kim, Tae-Hoon;Joo, Jae-Hyun;Koo, Kyung-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.148-153
    • /
    • 2011
  • In this paper, an inverse class E frequency multiplier has been designed to generate 5.8 GHz wireless LAN signal by multiplying 2.9 GHz input. The inverse class E frequency multiplier is operating with low inductance value and low peak drain voltage than the class E frequency multiplier. Measurement shows the output power of 21 dBm, the mutiplier gain of 6 dB, and the PAE(Power Added Efficiency) of 35 % with 15 dBm input power.

A Study on Radiator of VHF-Band Active Electronically Scanned Array with the Trapezoidal Dipole Structure Using Meander-Line (미엔더 라인을 이용한 사다리꼴 다이폴 구조의 VHF 대역 능동 위상 배열안테나 복사소자 연구)

  • Park, Dae-Sung;Ko, Young-Kwan;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1027-1035
    • /
    • 2016
  • In this paper, the method to miniaturize the radiating element of a VHF-band active electronically scanned array is proposed. The length of the proposed dipole having trapezoidal shape structure is miniaturized using meander line while the performance degradation is minimized. The grid reflector is used to improve the antenna directivity and insensitivity due to the outer environment. In addition, the antenna is designed to take into account for array application. The fabricated antenna has a 9.1 % fractional bandwidth for the voltage standing wave ratio(VSWR) 2:1 and the maximum gain of 4.24 dBi. The front-to-back ratio(FBR) is larger than 15 dB.