• 제목/요약/키워드: voltage amplifier

검색결과 824건 처리시간 0.032초

인버터의 직류링크 전압 검출 및 궤환을 위한 절연앰프 회로 (Isolation Amplifier Circuits for Sensing and Feedback of the Inverter DC-Link Voltage)

  • 김경서
    • 전력전자학회논문지
    • /
    • 제19권6호
    • /
    • pp.522-529
    • /
    • 2014
  • This study proposes an isolation amplifier circuit for the sensing and feedback of inverter DC-link voltage, which is inevitable for the precise control of inverter output voltage. The isolation amplifier consists of a pulse-width modulator and a pulse transformer with dual secondary windings. The accuracy of the proposed circuit depends on the precise matching of filter parameters in dual secondary circuits. The influences of parameter inaccuracy on the amplifier performances are analyzed. A modified circuit is proposed to reduce the dependency on filter parameters. The validity of the proposed method is verified through simulation and experiment.

저전압 SRAM 의 고속동작을 위한 전류감지 증폭기 (A current sense amplifier for low-voltage and high-speed SRAM)

  • 박현욱;심상원;정연배
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.727-730
    • /
    • 2005
  • In this paper, we propose a new current sense amplifier for low-voltage, high-speed SRAM. As a supply voltage is reduced, a sensing delay is increased owing to reduced cell read current. It causes a low-speed operation in SRAM. To overcome this problem, we present a new current sense amplifier which consists of the current-mirror type circuit with feedback structure. For demonstration, a 0.8-V, 256-Kb SRAM incorporating the proposed current sense amplifier has been designed with $0.18-{\mu}m$ CMOS technology. The simulation results show 15.6ns of the sensing delay reduction in comparison with a previous current sense amplifier and 11.5ns of the sensing delay reduction in comparison with a voltage sense amplifier.

  • PDF

Ku-Band Power Amplifier MMIC Chipset with On-Chip Active Gate Bias Circuit

  • Noh, Youn-Sub;Chang, Dong-Pil;Yom, In-Bok
    • ETRI Journal
    • /
    • 제31권3호
    • /
    • pp.247-253
    • /
    • 2009
  • We propose a Ku-band driver and high-power amplifier monolithic microwave integrated circuits (MMICs) employing a compensating gate bias circuit using a commercial 0.5 ${\mu}m$ GaAs pHEMT technology. The integrated gate bias circuit provides compensation for the threshold voltage and temperature variations as well as independence of the supply voltage variations. A fabricated two-stage Ku-band driver amplifier MMIC exhibits a typical output power of 30.5 dBm and power-added efficiency (PAE) of 37% over a 13.5 GHz to 15.0 GHz frequency band, while a fabricated three-stage Ku-band high-power amplifier MMIC exhibits a maximum saturated output power of 39.25 dBm (8.4 W) and PAE of 22.7% at 14.5 GHz.

  • PDF

새로운 구조의 저전압 고이득 트랜스레지스턴스 증폭기 설계 (The Novel Low-Voltage High-Gain Transresistance Amplifier Design)

  • 김병욱;방준호;조성익
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2257-2261
    • /
    • 2007
  • A new CMOS transresistance amplifier for low-voltage analog integrated circuit design applications is presented. The proposed transresistance amplifier circuit based on common-source and negative feedback topology is compared with other recent reported transresistance amplifier. The proposed transresistance amplifier achieves high transresistance gain, gain-bandwidth with the same input/output impedance and the minimum supply voltage $2V_{DSAT}+V_T$. Hspice simulation using 1.8V TSMC $0.18{\mu}m$ CMOS technology was performed and achieved $59dB{\Omega}$ transresistance gain which is above the maximum about $18dB{\Omega}$ compared to transresistance gain of the reported circuit.

An L-band Stacked SOI CMOS Amplifier

  • Kim, Young-Gi;Hwang, Jae-Yeon
    • 전기전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.279-284
    • /
    • 2016
  • This paper presents a two stage L-band power amplifier realized with a $0.32{\mu}m$ Silicon-On-Insulator (SOI) CMOS technology. To overcome a low breakdown voltage limit of MOSFET, stacked-FET structures are employed, where three transistors in the first stage amplifier and four transistors in the second stage amplifier are connected in series so that their output voltage swings are added in phase. The stacked-FET structures enable the proposed amplifier to achieve a 21.5 dB small-signal gain and 15.7 dBm output 1-dB compression power at 1.9 GHz with a 122 mA DC current from a 4 V supply. The amplifier delivers a 19.7 dBm. This paper presents a two stage L-band power amplifier realized with a $0.32{\mu}m$ Silicon-On-Insulator (SOI) CMOS technology. To overcome a low breakdown voltage limit of MOSFET, stacked-FET structures are employed, where three transistors in the first stage amplifier and four transistors in the second stage amplifier are connected in series so that their output voltage swings are added in phase. The stacked-FET structures enable the proposed amplifier to achieve a 21.5 dB small-signal gain and 15.7 dBm output 1-dB compression power at 1.9 GHz with a 122 mA DC current from a 4 V supply. The amplifier delivers a 19.7 dBm saturated output power with a 16 % maximum Power Added Efficiency (PAE). A bond wire fine tuning technology enables the amplifier a 23.67 dBm saturated output power with a 20.4 % maximum PAE. The die area is $1.9mm{\times}0.6mm$.

가변출력전압 AC/DC 컨버터를 이용한 파라메트릭 어레이 트랜스듀서용 고효율 전력증폭기의 설계 (Design of High Efficiency Power Amplifier for Parametric Array Transducer using Variable Output Voltage AC/DC Converter)

  • 심재혁;이창열;김슬기;김인동;문원규;이종현;김원호
    • 전력전자학회논문지
    • /
    • 제19권4호
    • /
    • pp.364-375
    • /
    • 2014
  • Parametric array transducers are used for long-range and highly directional communication in an underwater environments. The power amplifiers for parametric array transducers should have sufficient linear output characteristic and high efficiency to avoid communication errors, system heating, and fuel problems. But the conventional power amplifier with fixed source voltage is very low efficient due to large power loss by the big difference between the fixed source voltage and the amplifier output voltage. Thus to solve the problems this paper proposes the high efficiency power amplifier for parametric array transducers. The proposed power amplifier ensures high linearity of output characteristic by utilizing the push-pull class B type amplifier and furthermore gets high efficiency by applying the envelope tracking technique that variable source voltage tracks the envelope of the amplified signal. Also the paper suggests the detailed circuit topology and design guideline of class B push-pull type amplifier and variable output voltage AC/DC converter. Its characteristics are verified by the detailed simulation and experimental results.

A SiGe HBT Variable Gain Driver Amplifier for 5-GHz Applications

  • 채규성;김창우
    • 한국통신학회논문지
    • /
    • 제31권3A호
    • /
    • pp.356-359
    • /
    • 2006
  • A monolithic SiGe HBT variable gain driver amplifier(VGDA) with high dB-linear gain control and high linearity has been developed as a driver amplifier with ground-shielded microstrip lines for 5-GHz transmitters. The VGDA consists of three blocks such as the cascode gain-control stage, fixed-gain output stage, and voltage control block. The circuit elements were optimized by using the Agilent Technologies' ADSs. The VGDA was implemented in STMicroelectronics' 0.35${\mu}m$ Si-BiCMOS process. The VGDA exhibits a dynamic gain control range of 34 dB with the control voltage range from 0 to 2.3 V in 5.15-5.35 GHz band. At 5.15 GHz, maximum gain and attenuation are 10.5 dB and -23.6 dB, respectively. The amplifier also produces a 1-dB gain-compression output power of -3 dBm and output third-order intercept point of 7.5 dBm. Input/output voltage standing wave ratios of the VGDA keep low and constant despite change in the gain-control voltage.

고속 저전압 스윙 온 칩 버스 (High Speed And Low Voltage Swing On-Chip BUS)

  • 양병도;김이섭
    • 대한전자공학회논문지SD
    • /
    • 제39권2호
    • /
    • pp.56-62
    • /
    • 2002
  • 문턱전압 스윙 드라이버(threshold voltage swing driver)와 이중 감지 증폭기 리시버(dual sense amplifier receiver)를 가진 새로군 고속 저전압 스윙 온 칩 버스 (on-chip BUS)를 제안하였다. 문턱전압 스윙 드라이버는 버스에서의 전압상승 시간을 CMOS 인버터(inverter) 드라이버에서의 약 30% 이내로 줄여주고, 이중 감지 증폭기 리시버는 감지 증폭기 리시버를 사용하는 기존의 저전압 스윙 버스들의 데이터 전송량을 두 배 향상시켜 준다. 문턱전압 스윙 드라이버와 이중 감지 증폭기 리시버를 모두 사용할 경우, 온 칩 버스에서 사용하는 기존의 CMOS 인버터와 비교하여 제안된 방식은 약 60%의 속도 증가와 75%의 소모전력 감소를 얻는다.

전류 재사용 Gm-boosting 기술을 이용한 MedRadio 대역에서의 170㎼ 저잡음 증폭기 (A 170㎼ Low Noise Amplifier Using Current Reuse Gm-boosting Technique for MedRadio Applications)

  • 김인수;권구덕
    • 전자공학회논문지
    • /
    • 제54권2호
    • /
    • pp.53-57
    • /
    • 2017
  • 본 논문에서는 의료 기기용 401MHz - 406MHz MedRadio 대역에서 사용하는 저잡음 증폭기를 제안한다. 제안한 저잡음 증폭기는 전류 재사용 gm-boosting 기술을 이용한 공통 게이트 증폭기 구조를 채택하여 기존의 gm-boosted 공통 게이트 증폭기에 비해 동일한 전력소모에서 더 높은 전압 이득과 더 낮은 잡음 지수 특성을 얻었다. 제안한 전류 재사용 gm-boosted 저잡음 증폭기는 $0.13{\mu}m$ CMOS 공정을 사용하여 설계하였고, 22 dB의 전압 이득, 2.95 dB의 잡음 지수, -17 dBm의 IIP3 특성을 보이며, 공급 전압 0.5 V에서 $170{\mu}W$의 전력을 소비한다.

A Gate-Leakage Insensitive 0.7-V 233-nW ECG Amplifier using Non-Feedback PMOS Pseudo-Resistors in 0.13-μm N-well CMOS

  • Um, Ji-Yong;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권4호
    • /
    • pp.309-315
    • /
    • 2010
  • A fully-differential low-voltage low-power electrocardiogram (ECG) amplifier by using the nonfeedback PMOS pseudo-resistors is proposed. It consists of two operational-transconductance amplifiers (OTA) in series (a preamplifier and a variable-gain amplifier). To make it insensitive to the gate leakage current of the OTA input transistor, the feedback pseudo-resistor of the conventional ECG amplifier is moved to input branch between the OP amp summing node and the DC reference voltage. Also, an OTA circuit with a Gm boosting block without reducing the output resistance (Ro) is proposed to maximize the OTA DC gain. The measurements shows the frequency bandwidth from 7 Hz to 480 Hz, the midband gain programmable from 48.7 dB to 59.5 dB, the total harmonic distortion (THD) less than 1.21% with a full voltage swing, and the power consumption of 233 nW in a 0.13 ${\mu}m$ CMOS process at the supply voltage of 0.7 V.