• Title/Summary/Keyword: volatility asset model

Search Result 60, Processing Time 0.022 seconds

Regime-dependent Characteristics of KOSPI Return

  • Kim, Woohwan;Bang, Seungbeom
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.6
    • /
    • pp.501-512
    • /
    • 2014
  • Stylized facts on asset return are fat-tail, asymmetry, volatility clustering and structure changes. This paper simultaneously captures these characteristics by introducing a multi-regime models: Finite mixture distribution and regime switching GARCH model. Analyzing the daily KOSPI return from $4^{th}$ January 2000 to $30^{th}$ June 2014, we find that a two-component mixture of t distribution is a good candidate to describe the shape of the KOSPI return from unconditional and conditional perspectives. Empirical results suggest that the equality assumption on the shape parameter of t distribution yields better discrimination of heterogeneity component in return data. We report the strong regime-dependent characteristics in volatility dynamics with high persistence and asymmetry by employing a regime switching GJR-GARCH model with t innovation model. Compared to two sub-samples, Pre-Crisis (January 2003 ~ December 2007) and Post-Crisis (January 2010 ~ June 2014), we find that the degree of persistence in the Pre-Crisis is higher than in the Post-Crisis along with a strong asymmetry in the low-volatility (high-volatility) regime during the Pre-Crisis (Post-Crisis).

Economic Evaluation of National Highway Construction Projects using Real Option Pricing Models (실물옵션 가치평가모형을 이용한 국도건설사업의 경제적 가치 평가)

  • Jeong, Seong-Yun;Kim, Ji-Pyo
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.75-89
    • /
    • 2014
  • PURPOSES : This study evaluates the economic value of national highway construction projects using Real Option Pricing Models. METHODS : We identified the option premium for uncertainties associated with flexibilities according to the future's change in national highway construction projects. In order to evaluate value of future's underlying asset, we calculated the volatility of the unit price per year for benefit estimation such as VOTS, VOCS, VICS, VOPCS and VONCS that the "Transportation Facility Investment Evaluation Guidelines" presented. RESULTS : We evaluated the option premium of underlying asset through a case study of the actual national highway construction projects using ROPM. And in order to predict the changes in the option value of the future's underlying asset, we evaluated the changes of option premium for future's uncertainties by the defer of the start of construction work, the contract of project scale, and the abandon of project during pre-land compensation stages that were occurred frequently in the highway construction projects. Finally we analyzed the sensitivity of the underlying asset using volatility, risk free rate and expiration date of option. CONCLUSIONS : We concluded that a highway construction project has economic value even though static NPV had a negative(-) value because of the sum of the existing static NPV and the option premium for the future's uncertainties associated with flexibilities.

Systematic Risk Analysis on Bitcoin Using GARCH Model (GARCH 모형을 활용한 비트코인에 대한 체계적 위험분석)

  • Lee, Jung Mann
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.4
    • /
    • pp.157-169
    • /
    • 2018
  • The purpose of this study was to examine the volatility of bitcoin, diagnose if bitcoin are a systematic risk asset, and evaluate their effectiveness by estimating market beta representing systematic risk using GARCH (Generalized Auto Regressive Conditional Heteroskedastieity) model. First, the empirical results showed that the market beta of Bitcoin using the OLS model was estimated at 0.7745. Second, using GARCH (1, 2) model, the market beta of Bitcoin was estimated to be significant, and the effects of ARCH and GARCH were found to be significant over time, resulting in conditional volatility. Third, the estimated market beta of the GARCH (1, 2), AR (1)-GARCH (1), and MA (1)-GARCH (1, 2) models were also less than 1 at 0.8819, 0.8835, and 0.8775 respectively, showing that there is no systematic risk. Finally, in terms of efficiency, GARCH model was more efficient because the standard error of a market beta was less than that of the OLS model. Among the GARCH models, the MA (1)-GARCH (1, 2) model considering non-simultaneous transactions was estimated to be the most appropriate model.

Block Trading Based Volatility Forecasting: An Application of VACD-FIGARCH Model

  • TU, Teng-Tsai;LIAO, Chih-Wei
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.4
    • /
    • pp.59-70
    • /
    • 2020
  • The purpose of this study is to construct the ACD model for the block trading volume duration. The ACD model based on the block trading volume duration is referred to as Volume ACD (VACD) in this study. By integrating with GARCH-type models, the VACD based GARCH type models, which include VACD-GARCH, VACD-IGARCH and VACD-FIGARCH models, are set up. This study selects Chunghwa Telecom (CHT) Inc., offering the America Depository Receipt (ADR) in NYSE, to investigate the block trading volume duration in Taiwanese equity market. The empirical results indicate that the long memory in volume duration series increases dependence at level of volatility clustering by VACD (2,1)-FIGARCH (3,d,1) model. Moreover, the VACD (2,1)-IGARCH (1,1) exhibits relatively better performance of prediction on capturing block trading volume duration. This volatility model is more appropriate in this study to portray the change of the CHT Inc. prices and provides more information about the volatility process for investment strategy, which can be a reference indicator of financial asset pricing, hedging strategy and risk management.

ARITHMETIC AVERAGE ASIAN OPTIONS WITH STOCHASTIC ELASTICITY OF VARIANCE

  • JANG, KYU-HWAN;LEE, MIN-KU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.2
    • /
    • pp.123-135
    • /
    • 2016
  • This article deals with the pricing of Asian options under a constant elasticity of variance (CEV) model as well as a stochastic elasticity of variance (SEV) model. The CEV and SEV models are underlying asset price models proposed to overcome shortcomings of the constant volatility model. In particular, the SEV model is attractive because it can characterize the feature of volatility in risky situation such as the global financial crisis both quantitatively and qualitatively. We use an asymptotic expansion method to approximate the no-arbitrage price of an arithmetic average Asian option under both CEV and SEV models. Subsequently, the zero and non-zero constant leverage effects as well as stochastic leverage effects are compared with each other. Lastly, we investigate the SEV correction effects to the CEV model for the price of Asian options.

FINANCIAL MODELS INDUCED FROM AUXILIARY INDICES AND TWITTER DATA

  • Oh, Jae-Pill
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.529-552
    • /
    • 2014
  • As we know, some indices and data are strong influence to the price movement of some assets now, but not to another assets and in future. Thus we define some asset models for several time intervals; intraday, weekly, monthly, and yearly asset models. We define these asset models by using Brownian motion with volatility and Poisson process, and several deterministic functions(index function, twitter data function and big-jump simple function etc). In our asset models, these deterministic functions are the positive or negative levels of auxiliary indices, of analyzed data, and for imminent and extreme state(for example, financial shock or the highest popularity in the market). These functions determined by indices, twitter data and shocking news are a kind of one of speciality of our asset models. For reasonableness of our asset models, we introduce several real data, figurers and tables, and simulations. Perhaps from our asset models, for short-term or long-term investment, we can classify and reference many kinds of usual auxiliary indices, information and data.

Bayesian analysis of financial volatilities addressing long-memory, conditional heteroscedasticity and skewed error distribution

  • Oh, Rosy;Shin, Dong Wan;Oh, Man-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.507-518
    • /
    • 2017
  • Volatility plays a crucial role in theory and applications of asset pricing, optimal portfolio allocation, and risk management. This paper proposes a combined model of autoregressive moving average (ARFIMA), generalized autoregressive conditional heteroscedasticity (GRACH), and skewed-t error distribution to accommodate important features of volatility data; long memory, heteroscedasticity, and asymmetric error distribution. A fully Bayesian approach is proposed to estimate the parameters of the model simultaneously, which yields parameter estimates satisfying necessary constraints in the model. The approach can be easily implemented using a free and user-friendly software JAGS to generate Markov chain Monte Carlo samples from the joint posterior distribution of the parameters. The method is illustrated by using a daily volatility index from Chicago Board Options Exchange (CBOE). JAGS codes for model specification is provided in the Appendix.

DOMAIN OF INFLUENCE OF LOCAL VOLATILITY FUNCTION ON THE SOLUTIONS OF THE GENERAL BLACK-SCHOLES EQUATION

  • Kim, Hyundong;Kim, Sangkwon;Han, Hyunsoo;Jang, Hanbyeol;Lee, Chaeyoung;Kim, Junseok
    • The Pure and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2020
  • We investigate the domain of influence of the local volatility function on the solutions of the general Black-Scholes model. First, we generate the sample paths of underlying asset using the Monte Carlo simulation. Next, we define the inner and outer domains to find the effective volatility region. To confirm the effect of the inner domain, we use the root mean square error for the European call option prices, and then change the values of volatility in the proposed domain. The computational experiments confirm that there is an effective region which dominates the option pricing.

TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL

  • Hyun, Jung-Soon;Kim, Young-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.845-858
    • /
    • 2006
  • We present two approaches of the stochastic interest rate European option pricing model. One is a bond numeraire approach which is applicable to a nonzero value asset. In this approach, we assume log-normality of returns of the asset normalized by a bond whose maturity is the same as the expiration date of an option instead that of an asset itself. Another one is the expectation hypothesis approach for value zero asset which has futures-style margining. Bond numeraire approach allows us to calculate volatilities implied in options even though stochastic interest rate is considered.

Volatility Puzzle, Equity Premium Puzzle, And Mean Reversion; Are They Interrelated Phenomena?

  • Choi, Sung-Sup
    • The Korean Journal of Financial Studies
    • /
    • v.2 no.1
    • /
    • pp.145-158
    • /
    • 1995
  • According to recent empirical studies, there is a systematic pattern in temporal behaviors of asset returns, and that systematic pattern is related to the business cycle. I propose a model which captures this evidence. This is done by considering a state dependent preference structure where state dependency is related to the business cycle. In this setting, the three main puzzles(i.e., the volatility puzzle, the equity premium puzzle, mean reversion) are understood as interrelated behaviors.

  • PDF