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Abstract

Volatility plays a crucial role in theory and applications of asset pricing, optimal portfolio allocation, and
risk management. This paper proposes a combined model of autoregressive moving average (ARFIMA), gener-
alized autoregressive conditional heteroscedasticity (GRACH), and skewed-7 error distribution to accommodate
important features of volatility data; long memory, heteroscedasticity, and asymmetric error distribution. A fully
Bayesian approach is proposed to estimate the parameters of the model simultaneously, which yields parameter
estimates satisfying necessary constraints in the model. The approach can be easily implemented using a free
and user-friendly software JAGS to generate Markov chain Monte Carlo samples from the joint posterior distri-
bution of the parameters. The method is illustrated by using a daily volatility index from Chicago Board Options
Exchange (CBOE). JAGS codes for model specification is provided in the Appendix.
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1. Introduction

Volatility plays a crucial role in the theory and application of asset pricing, optimal portfolio alloca-
tion, and risk management. It is therefore important to introduce a model addressing the key features
of volatility data sets and develop a valid estimation method. The most dominant features of the
usual volatilities, the historic volatilities, the implied volatilities, and the realized volatilities are long
memories, conditional heteroscedasticity and skewed error distribution.

The fractionally integrated autoregressive moving average (ARFIMA) model (Granger and Joyeux,
1980; Hosking, 1981) and the generalized autoregressive conditional heteroscedasticity (GARCH)
model (Bollerslev, 1986) have been widely used to explain the long memory and the time-varying
conditional variance features of volatilities, respectively. Park (2016) used a skewed student ¢ distri-
bution to incorporate asymmetry as well as fat tails of error distribution (Corsi et al., 2008; Grassi and
Magistris, 2015; Graves et al., 2015; Maasoumi and McAleer, 2008; Wang et al., 2013).

However, none of the currently available methods propose a model incorporating all the above
three features simultaneously. For example, Baillie ef al. (1996) proposed the ARFIMA + GARCH
model but did not incorporate the asymmetry of the error distribution. Park (2016) proposed a hetero-
geneous autoregressive (HAR) model to incorporate the long memory and then employed a GARCH
+ skewed-t distribution model to the estimated residuals obtained from fitting the HAR model to
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volatility data sets. Consequently, they incorporated the three features of volatilities in a stepwise
fashion rather than simultaneously.

In this paper, we propose a model which combines ARFIMA, GARCH, and skewed-¢ distribution,
namely ARFIMA + GARCH + skewed-f model, to simultaneously account for the long memory,
time-varying variance, and asymmetric error distribution features of volatilities.

A Bayesian approach is used to estimate the parameters of the model. We employ Just Another
Gibbs Sampler (JAGS, http://mcmc-jags.sourceforge.net/) to generate Markov chain Monte Carlo
(MCMC) samples from the joint posterior distributions of the parameters. A key advantage of JAGS
is that the software runs MCMC automatically once a user specifies a model (the distribution of data
and the prior distributions of parameters); therefore, practitioners who are not experts in MCMC may
also easily implement Bayesian inference using JAGS.

Given the posterior samples, several features of interest, such as the estimated marginal posterior
densities, posterior moments, quantiles, scatter plots exhibiting interesting relations between param-
eters, may be derived in a straightforward manner. In addition, any restrictions on parameters, such
as inequality restrictions on coefficients in the GARCH model to ensure stationarity, can be imple-
mented in a straightforward way. Finally, useful prior information, which may be available from the
data context or previous data analysis, can be used in Bayesian approaches (Czado and Min, 2011).

This paper is organized as follows. Section 2 presents the ARFIMA + GARCH + skewed-# model
and the Bayesian estimation method. Section 3 presents analysis of a real data set. The final section
draws conclusions.

2. Method

In this section, we describe the proposed model, the priors for the parameters, and a Markov chain
Monte Carlo method for Bayesian inference.

2.1. Model

We consider a model that captures the features of conditional heteroscedasticity, long-memory, asym-
metry, and fat tails via a combination of ARFIMA, GARCH, and skewed-¢ distribution. Long memo-
ries of volatility process y; is modeled by the ARFIMA(p, d, g) process

®(B)(1 - B)'y, = 6y + O(B)e,, 2.1

where ¢, is a zero mean uncorrelated error sequence, d € (—0.5, 1) is the fractional integration param-
eter, B is the backward-shift operator, and ®(B) = 1 -¢B—---—¢,B? and ®(B) = 1 -6,B—---—0,B1
are assumed to have roots outside the unit circle and have no common roots. The fractional differenc-
ing operator, (1 - B)?, is defined as (1 - B)? = Y2, mcB¥, where mp = 1, and m = m—(k — 1 — d)/k for
k> 0. Ifd € (-0.5,0.5), y, is stationary; if d € [0.5, 1), y; is nonstationary. For nonstationary series,
Bayesian analysis can be made on the differenced series w, = (1 — B)y;, which is always stationary for
d € (-0.5,1]. The difference series w; is an ARFIMA(p, 6, q) given by ®(B)(1 — B’ (w, —u) = O(B)e;,
where 6 =d — 1 and u = E(w,).

From Bollerslev et al., (1992), in general a GARCH(1, 1) model is sufficient to capture volatility
clustering in the data. Therefore, in order to address the time-varying variance of y,, the error e, in
(2.1) can be assumed to follow a GARCH(1, 1) model given by

2 2 2
e =0:&, O] =ao+aie_, +pio;,



Bayeisan analysis of ARFIMA + GARCH + skewed-t model 509

where &, is a sequence of i.i.d. errors having zero mean and unit variance. Positivity of o> and
stationarity of e, are ensured via the standard restrictions: @y > 0, @; > 0,8y >0, and o + 8 < 1.

Asymmetry and fat tails are featured for the zero-mean-unit-variance error & to have a standard-
ized skewed-¢ distribution with skewness parameter 6 and degrees of freedom v (Lambert and Laurent,
2001). It has a probability density function (pdf)

rzlty O(se, +m)), ife <—2,
_ B s
f(&lb,v) = g se, 4+ m . - (2.2)
tv( ), ifg, > ——,
6+06-! 0 s

where m and s? are the mean and the variance of the nonstandardized skewed-z distribution; in addi-
tion, #,(-) denotes the standard Student ¢ density with v degrees of freedom. The expected value and
the variance of &, are given as E(g;) = 0, V(g,) = 1. The parameter 8 indicates the direction and the
degree of skewness. If 8 = 1, the skewed- distribution reduces to the Student ¢ distribution.

Now we consider a model consisting of ARFIMA(1, d,0), GARCH(1, 1), and skewed-¢ distribu-
tion, for which we have

(1 =¢B)(1 - BY’(w, — ) = ey,

€ = 0&,

2 2 2 (2.3)
oy =ag +aje;_ + B0,

& " Std.skt(6, ),
with constraints ag > 0, @1 > 0, 81 = 0, a1 + 81 < 1. We will refer this model as ARFIMA(1, d, 0)
+ GARCH(1, 1) + skewed-f model. The combined model takes into account all the previously men-
tioned important features of volatility data sets.

2.2. Priors

We assume prior independence among u, ¢, 9, (g, @1,81),6,v. All parameters except for u should
satisfy some constraints. We incorporate these constraints in prior distributions of the parameters so
that posterior samples generated from MCMC as well as estimates of the parameters automatically
satisfy the constraints.

A diffuse normal prior is used for yu, ie., u ~ N(j,t'u,O'Z), with o, large. We assume ¢ ~
N(,u¢,o'é)l(—1, 1) and 6 ~ N(us, 0'§)I(—1,O). For the prior of (ag, @1,81), we assume m(ag, @1,81) =
m(ag, ap)rB)l(ay > 0,1 = 0,81 > 0, a; + B < 1), where I(:) is the indicator function. We
choose 7(B1) as N(ug,, 0'[2;,1). For n(ag, @), we choose a hierarchical prior suggested by Ardia and

Hoogerheide (2009):
0 o2 POHO|
-~ 0
(@0, @1) N( (O) ’ (p0'00'1 o-f ’

p ~ N(up,op)I(=1 < p < 1), g, ~ Unif(-1,1), 07 ~ Gamma(1.5,107*). Finally, we assume
6 ~ N(ug, 02)1(0 > 0), and v ~ N(u,, c2)I(v > 2).
2.3. Estimation

Clearly, the posterior distribution of the parameters ® = (u, d, ¢, ag, @1,81, 0, v) in the model (2.3)
is not analytically tractable. Simple MCMC methods such as standard Gibbs sampling methods are
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not applicable to this model; therefore, Metropolis-Hastings (MH) algorithm is required to generate
posterior samples of the parameters.

Implementation of the MH algorithm is often complicated for practitioners who are not experts
in MCMC and/or coding. We get around this difficulty by generating MCMC samples by using
user-friendly JAGS software. Given the model specification, it employs either Gibbs sampler when
available or MH algorithm to generate posterior samples.

To use JAGS, the distribution of data needs to be specified as one of the distributions built in
JAGS. However, the distributions in the ARFIMA(1,d,0) + GARCH(1, 1) + skewed-t model are not
commonly used distributions and are not provided by JAGS. Instead of specifying the data distribution,
we can specify the likelihood function since JAGS derives the likelihood from the distribution of data
and uses them for the Gibbs sampler or MH algorithm.

For the likelihood of ®, we first derive the joint pdf of e = (ej, e, ..., er) from the GARCH(I, 1)
and the skewed-7 models, which is given as

f(els €2y, eT|®) = f(61|®)f(32|61, ®) e f(eTleh €),...,€1-1, ®)
e\ 1 er )\ 1 e 1
=fs(—l)—fg(—2)—~~fs(—T)—, (2.4)
g1/ 01 02/ 02 or)or
where f,(-) is the density function of standardized skewed-¢ distribution given in (2.2). Now we plug

in the residuals in the ARFIMA model into (2.4). If w, is invertible, the residual ¢, in the ARFIMA
model can be represented as an infinite autoregressive (AR) process as;

e = kz_(; Wik — ) = dWi—g—1 — 1)) = kz_(; Wik = ), 2.5)

where Y = mp—m— 19, Yo = 1, 1 = M1 (k — 1 — d)/k and myp = 1. The equation (2.5) is an infinite AR
representation of ARFIMA(1,d — 1,0). However, when T is sufficiently large and the first difference
wy is stationary, we may replace (2.5) by a finite AR representation

t—1

e = ) YW — ). (2.6)
k=0

In usual financial volatility analysis, since data sets are recorded daily or more frequently and the
series length is large, this approximation would be good. Now the likelihood function of ® in the
ARFIMAC(1,d,0) + GARCH(1, 1) + skewed-f model is given by (2.4) with e, t = 1,...,T, given in
(2.6).

The likelihood function (2.4) can be specified in the model specification of JAGS, using the
method suggested by Ntzoufras (2011) and Kruschke (2014). The Appendix contains the model
specification used in JAGS.

3. Analysis of the volatility index data
3.1. Exploratory study

We consider a daily closing price for the volatility index (VIX), which is a measure of market expecta-
tions on volatility over the next 30 days conveyed by S&P 500 stock index option prices. The data set
can be obtained from the Chicago Board Options Exchange (CBOE) web site, http://www.cboe.com/
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Figure 1: Time series plots of the volatility index.

Table 1: Summary statistics of the volatility index data

Min Median Mean Max SD Skewness Kurtosis
9.890 17.230 20.060 80.860 9.574 2.392 7.546
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Figure 2: Histogram with normal density curve and ACF of the VIX. ACF = autocorrelation function; VIX =
volatility index.

micro/vix/historical.aspx. We use data from January 3, 2006 to November 30, 2016, which contains
2,748 observations.

Time series plot of the VIX is presented in Figure 1. From the figure, we can see apparent condi-
tional heteroscedastic feature of the VIX data; that high peaks from August 2007 to March 2009 due
to the financial crisis of 2007-2008 cause large volatilities and that the relatively lower index values
between 2013 and 2015 have smaller volatilities.

Table 1 shows basic summary statistics of the VIX. Figure 2 displays the histogram (with a normal
approximation) and the autocorrelation function (ACF) plot of the VIX. The values of skewness,
median, and mean (Table 1) and the histogram (Figure 2) show that the VIX is skewed to the right
and has highly fat tails. The ACF plot of the VIX shows the feature of long memory which can be
seen that the VIX is skewed to the right and has highly fat tails. The ACF plot of the VIX shows the
feature of long memory which can be also supported by the GPH (Geweke and Porter-Hudak, 1983)
test statistics of 8.663.
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Table 2: Test for unit root

ADF test KPSS test
p-value 0.0422 <0.01

ADF = augmented Dicky-Fuller; KPSS = Kwiatkowski-Phillips-Schmidt-Shin.

Table 3: Estimation results for the first difference of volatility index from ARFIMA + GARCH + skewed-¢
model

95 % credible interval

Estimated posterior mean Standard error

Lower Upper
u -0.008 0.002 -0.013 -0.004
¢ 0.186 0.036 0.118 0.256
§ -0.332 0.029 —-0.387 -0.276
@ 0.068 0.014 0.046 0.099
] 0.213 0.023 0.170 0.260
B 0.778 0.022 0.732 0.818
6 1.376 0.037 1.304 1.450
v 4.419 0.317 3.871 5.113

ARFIMA = autoregressive moving average; GARCH = generalized autoregressive conditional heteroscedasticity.
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Figure 3: Scatter plot for a; and ;.

Table 2 presents the p-values of augmented Dicky-Fuller (ADF) test and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test on the VIX (Dickey and Fuller, 1979; Kwiatkowski et al., 1992). Null
hypotheses of both the ADF and the KPSS tests are rejected at 5% level. Recall that the ADF and
the KPSS tests have reversed the null hypothesis of unit root stationarity, respectively. It presumably
indicates that there exists significant evidence that the process is a neither nonstationary nor stationary
process but near nonstationary. To meet stationarity property of the series, we use the first differences
of the VIX for analysis. Note that the differenced series is always stationary for d € (0.5, 1].

3.2. Analysis

We applied the proposed Bayesian method to the first differences of the VIX data and generated
posterior samples of parameters using JAGS. The first 3,000 iterations are discarded as burn-in and
we obtained 15,000 samples after the burn-in from 3 different chains. Convergence of MCMC is
diagnosed by Gelman-Rubin shrink factors and trace plots of the MCMC samples.

Table 3 displays the estimated posterior mean, standard error, and an approximate 95% credible
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Figure 4: Estimated posterior distribution (solid line) and normal distribution (dashed line).

interval of each parameter. All parameters are significant in that their 95% credible intervals do not
contain zero. The estimated posterior mean —0.332 of the fractional integration parameter ¢ indicates
that process of the VIX has a nonstationary memory of fractional integration order of 0.668. The sum
&) + 1 = 0.991 indicates strong conditional heteroscedasticity. We also see significant asymmetry of
the error distribution from the highly significant estimates = 1.376 of the skewness parameter.

The estimates satisfy the stationary condition &, +f3; < 1. Figure 3 displays the scatter plot of the
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Table 4: Estimation results for the first difference of volatility index from various models

95 % credible interval

ARFIMA + GARCH + skewed-t ARFIMA + GARCH + ¢ ARFIMA + GARCH + normal
Est. SE Lower  Upper Est. SE Lower  Upper Est. SE Lower  Upper
u 0.001 0.010 -0.018  0.020 —-0.021 0.004 -0.029 -0.015 —-0.013 0.004 -0.021 -0.006
) 0.028 0.030 -0.031 0.088 0.189 0.044 0.105 0.278 0.155 0.046  0.070 0.253
6 -0.181 0.024 -0227 -0.133 -0.305 0.037 -0.379 -0.236 -0.263 0.038 -0.343 -0.192
o2 3504 0096 3320  3.697 - - - - - - - -
e 0.095 0.017 0.065 0.132 0.097 0.019 0.062 0.136 0.143 0.018  0.110  0.180
) 0267 0.025 0.223  0.319 0.249 0.026  0.193  0.297 0.253 0.024 0.208  0.304
Bi 0.727 0.024  0.675  0.769 0.743 0.026  0.696  0.798 0.718 0.022  0.675  0.760
0 1.287 0.030 1.230 1.346 - - - - - - - -
v 4471 0315 3915 5.156 3921 0238 3505 4435 - - - -

ARFIMA = autoregressive moving average; GARCH = generalized autoregressive conditional heteroscedasticity;
Est. = Estimated posterior mean; SE = standard error.

Table 5: Deviance information criterion

skew-t t Normal
8886.260 9033.838 9508.023

samples of (a,1) when the constraints are ignored, in which the dark points represent the sample
points satisfying the condition and white points, 69.54% of samples, represent those not satisfying
the condition. The plot indicates that enforcing the constraints in the priors plays an important role to
obtain the estimates within the stationarity region.

Figure 4 shows the estimated marginal posterior distributions of the parameters (solid line) with
normal approximations (dashed line). The figure shows that marginally the posterior distributions
of the parameters seem to be well approximated by normal distributions, except for @y and v whose
distributions show slight deviations from the normal approximations. Note the marginal posterior dis-
tributions are close to normal; however, the joint posterior distributions may be significantly different
from multivariate normal (Figure 3).

For comparison, we applied a model ARFIMA + GARCH + skewed-#, which fits ARFIMA model
to the data and then fit GARCH + skewed-f model to the estimated residuals from the ARFIMA model.
The results are presented in Table 4.

The most notable differences are the estimates of the parameters of the ARFIMA model. In the
ARFIMA + GARCH + skewed-# model, § is much smaller and ¢ is much larger than those in the step-
wise ARFIMA + GARCH + skewed-f model. This reveals that the heteroscedasticity and/or skewed
error has affected the parameters of the ARFIMA model and hence the importance of simultaneous
consideration of the three important features of volatilities.

We also applied ARFIMA + GARCH + ¢ and ARFIMA + GARCH + normal models to the data,
assuming ¢ and normal error distributions, respectively, instead of skewed-z. Table 5 provides the
Deviance Information Criteria (DIC) (Spiegelhalter et al., 2002) for ARFIMA + GARCH + skewed-
t, ARFIMA + GARCH + t, and ARFIMA + GARCH + normal models. Among the three models,
ARFIMA + GARCH + skewed-# model is the best, having the smallest DIC, which reveals the asym-
metry and heavy-tails of the error distribution. Table 4 provides estimation results from ARFIMA +
GARCH + r and ARFIMA + GARCH + normal models. Compared with a skewed-¢ distribution for
the error, assuming a ¢ distribution yields a larger § and a smaller degrees of freedom, and a normal
distribution yields a much smaller ¢ and larger 6, @ and «;.
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4. Conclusion

In this paper, we have proposed a fully Bayesian implementation of the ARFIMA + GARCH +
skewed-f model which simultaneously takes into account the features of long memory, conditional
heteroscedasticity, asymmetry and fat tails of volatility data sets. JAGS are used to generate MCMC
samples of the parameters from their joint posterior distributions since it can be run automatically
given model specification without expert knowledge on MCMC and coding.

Bayesian method naturally produce estimates that satisfy the stationary constraints in GARCH
(1, 1), by incorporating constraints in the prior. The scatter plot of the samples of (@1,3;) show that
restricting the parameter space is necessary to obtain parameter estimates that satisfy the constraints.

In this Bayesian implementation, since the likelihood function of the parameters of the ARFIMA
+ GARCH + skewed-t model is specified, modifying the model specification and choosing flat priors
yield approximate conditional sum of squares (CSS) estimates within the stationary region based on
MCMC samples. One may also apply an optimization method directly to the given likelihood function
to obtain CSS estimates, instead of using MCMC samples. However, it is often relatively difficult to
incorporate parameter constraints in optimization than in MCMC.
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Appendix A: Model specification in JAGS

data{
zero <- 0
}
model {
e[1] = w[1]-mu
sig[1l] = sig®
epsilon[1]=e[1]/sig[1]

Z[1] = dpois(-1nfi[1])

Infi[1] = ifelse(s*epsilon[1]+m<®, 1Infl[1], Inf2[1])

Infi[1] = (log(2*s)-log(theta+ 1/theta)+
loggam((nu+1)/2)-(1/2)*1log(PI*(nu-2))-loggam(nu/2) -
((u+1)/2)*log(1+((theta*(s*epsilon[1]+m)) "2) /(nu-2)))-
log(sig[1])

Inf2[1] = (log(2*s)-log(theta+ 1/theta)+
loggam((nu+1)/2)-(1/2)*1log(PI* (nu-2))-loggam(nu/2)-
((mu+1)/2)*1log(1+(((s*epsilon[1]+m) /theta) "2)/(nu-2)))-
log(sig[1])

psi® =1
psil[l]= (-D*phi + (-1)*d
for(t in 2:n){

Z[t] ~ dpois(-1nfi[t])
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Infi[t]
Infi[t]

ifelse(s*epsilon[t]+m<®, Infl[t], Inf2[t])
log(2*s)-log(theta+ 1/theta) +
loggam((nu+1)/2)-(1/2)*log(PI*(nu-2))-loggam(nu/2)-
((nu+1)/2)*log(1l+((theta*(s*epsilon[t]+m)) "2)/(nu-2))-
log(sig[tD)

Inf2[t] = log(2*s)-log(theta+ 1/theta)+
loggam((nu+1)/2)-(1/2)*1log(PI* (nu-2))-loggam(nu/2)-
((nu+1)/2)*log(1+(((s*epsilon[t]+m)/theta) "2)/(nu-2))-
log(sig[tD)

psil[t] = pil[t]-pil[t-1]*phi
for(k in 1:(t-1)){
rev.psil[t,k] = psil[t-k]
}
epsilon[t] = e[t]/sig[t]
e[t] = psi®*(w[t]-mu) + inprod(rev.psil[t,1:(t-1)], (w[l:(t-1)]-mu))
sig[t] = sqrt(alpha® + alphal*(e[t-1])"2 + betal*(sig[t-1]"2))
}
pi® =1
pil[1l] = (-1*d
for(k in 2:n){
pil[k] = pil[k-1]*(k-1-d)/k
3
s = sqrt( theta"2 + theta"(-2) -1 - m"2 )
m = exp( loggam((nu-1)/2) + (1/2)*log(nu-2) - (1/2)*log(PI) -
loggam(nu/2))*(theta - 1/theta)

## prior for ARFIMA(1,d,0)

mu ~ dnorm(m.mu, (s2.mu*100)"(-1))

phi ~ dnorm(m.phi, (s2.phi*100)"(-1))T(-1,1)
d ” dnorm(m.d, (s2.d*100)"(-1))T(-1, ®)

PI = 3.14159265359

# prior for GARCH(1,1)
zero ~ dinterval(alphal+betal, 1)

alpha® ~ dnorm(m.alpha®, 1/s2.A[1,1]1)T(0®, )

alphal ~ dnorm(m.con.alphal, inv.s2.con.alphal)T(®, 1)

m.con.alphal = m.alphal+s2.A[2,1]*(1/s2.A[1,1])*(alpha®-m.alpha®)
inv.s2.con.alphal = (s2.A[2,2]-(s2.A[1,2])*(1/s2.A[1,1])*(s2.A[2,1]))"(-1)

s2.A[1,1] = s2.alpha0*100
s2.A[2,2] = s2.alphal*100
s2.A[1,2] = rho.a*sqrt(s2.A[1,1])*sqrt(s2.A[2,2])

s2.A[2,1] s2.A[1,2]
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rho.a ~ dnorm(mu_rho.a,tau_rho.a)T(-1,1)

mu_rho.a ~ dunif(-1,1)

tau_rho.a ” dgamma(1l.5,10E-4)

betal ~ dnorm(m.betal, (s2.betal*100)"(-1))T(®, 1)

# prior for std skewed-$t$
theta ~ dnorm(m.theta, (s2.theta*100)"(-1))
nu - dnorm(m.nu, (s2.nu*100)"(-1))T(2, )
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