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ABSTRACT. This article deals with the pricing of Asian options under a constant elasticity of
variance (CEV) model as well as a stochastic elasticity of variance (SEV) model. The CEV and
SEV models are underlying asset price models proposed to overcome shortcomings of the con-
stant volatility model. In particular, the SEV model is attractive because it can characterize the
feature of volatility in risky situation such as the global financial crisis both quantitatively and
qualitatively. We use an asymptotic expansion method to approximate the no-arbitrage price of
an arithmetic average Asian option under both CEV and SEV models. Subsequently, the zero
and non-zero constant leverage effects as well as stochastic leverage effects are compared with
each other. Lastly, we investigate the SEV correction effects to the CEV model for the price of
Asian options.

1. INTRODUCTION

Since the seminal achievement (Black & Scholes [1]) of Black and Scholes on European
vanilla options, pricing methods for a lot of complex exotic options also have been developed.
This study particularly concerns with the pricing of Asian options among those exotic options.
Asian options have a payoff frame more complex than the original European vanilla options
because Asian options have a strongly path-dependent feature. The name of Asian is known
to originate from the fact that two founders of the first pricing formula used to belong to Asia
(Tokyo, Japan) (cf. Wilmott [2]). Due to their averaging property, Asian options could diminish
the risk of financial market manipulation of underlying risky assets at the expiration day.

Like many other exotic derivatives, there is no analytic closed form formula for the price of
Asian options. So, many researchers have been devoted to develop how to price these options
approximately or numerically. For example, Geman and Yor [3], and Linetsky [4] used the
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approximation method. Kemna and Vorst [5] used the Monte Carlo method. Ingersoll [6],
Rogers and Shi [7], and Večěr [8] used the partial differential equation (PDE) method.

On the other hand, the Black−Scholes model (Black & Scholes [1]) corresponding to con-
stant volatility has been extended to fulfill requirements given by practical market phenomena
including volatility skew/smile, fat-tailed and asymmetricity of returns distributions, mean-
reversion of volatility and etc. For instance, constant elasticity of variance (CEV) model sug-
gested by Cox [9], stochastic volatility models by Heston [10] or Fouque et al. [11], and a
Levy model by Carr et al. [12] are among those popular ones. So, it is desirable to price
Asian options also based upon these advanced models. In fact, there are quite a number of
studies published along the lines of the extension. For example, there are Peng and Peng [13]
for the CEV model, Fouque and Han [14] for a mean-reverting stochastic volatility model, and
Lemmens et al. [15] for a Levy type model.

This paper chooses not only the CEV model but also the stochastic elasticity of variance
(SEV) model of Kim et al. [16] and compares the models by studying the price of an arithmetic
average Asian option. In the SEV model, stochastic leverage effect is a important feature of
the SEV model. It’s shown that the SEV model gives results of desirable correction to the
price under the Black−Scholes model in regard to both dynamics and geometry of the resultant
implied volatilities. The model has been utilized to study a perpetual American option (Yoon et
al. [17]) and an asset allocation problem (Yang et al. [18]). Further, the model can characterize
the feature of volatility during the peak period of the 2007-2008 global financial crisis both
quantitatively and qualitatively as shown in Kim et al. [19]. So, it would be quite interesting to
derive the value of the Asian option under this model.

This paper is organized as follows. In Section 2, we use the CEV model to characterize
the price of an arithmetic average Asian option. Section 3 is devoted to use the SEV model to
obtain a dynamic law of the price of the Asian option. In Section 4, we obtain the option price
in expanded form. Section 5 investigates the implications of the solution. Section 6 provides
concluding remarks.

2. PRICING UNDER CEV MODEL

In this section, we use a PDE method for the price of an Asian floating-strike option based
on the CEV model. In fact, Peng and Peng [13] have already studied the pricing of arithmetic
Asian options under the CEV model. They used a binomial tree method. In this paper, however,
we utilize Večěr’s dimension reduction skill given by Večěr [8] and some details in Fouque and
Han [14] to derive the corresponding option price.

Under a risk-neutral measure P ∗, the price St of an underlying asset at time t follows the
CEV model following stochastic differential equation (SDE) given by

dSt = rStdt+ σS
θ
2
t dW

∗
t , t < T, (2.1)

where r is an interest rate, σ is a volatility coefficient, θ is an elasticity parameter, W ∗
t is a

Brownian motion. In this paper, we truncate smoothly the value of St in such a way that the
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resultant price is bounded and bounded away from zero in the interval [0, T ] almost surely.
However, we are going to use the same notation St for the resultant price still.

A payoff function for arithmetic average Asian options is defined by

h

(
1

T

∫ T

0
Stdt−K1ST −K2

)
(2.2)

for some constants K1 and K2. Here, h is a homogeneous function with the property

h(αx) = αh(x). (2.3)

Here, if K1 = 0, (2.2) becomes a payoff for fixed strike Asian options, while, if K2 = 0, it is
a payoff for floating strike Asian options.

Now, we define the Asian option price at t = 0 by

P (0, s;T,K1,K2) = E∗
[
e−rTh

(
1

T

∫ T

0
Sudu−K1ST −K2

)
|S0 = s

]
,

where E∗ means the expectation under the risk-neutral measure P ∗.
As a preliminary, we compose a portfolio (αt, βt) whose value is given by

Xt = αtSt + βte
rt (2.4)

to replicate an averaged process 1
t

∫ t
0 Sudu, where αt and βt are numbers of the risky asset and

risk-free asset at time t so that they are to be determined later. Here, αt is assumed to be a
non-random function. Applying the self-financing strategy, we obtain that from (2.1) and (2.4)

dXt = αtdSt + βtd(e
rt)

= αtdSt + r(Xt − αtSt)dt

= rXtdt+ αt(dSt − rStdt)

= rXtdt+ αtσS
θ
2
t dW

∗
t . (2.5)

Since the function αt is a non-randomness, we can obtain

d(er(T−t)αtSt) = er(T−t)αt(dSt − rStdt) + er(T−t)Stdαt (2.6)

Then, using equation (2.5) and (2.6), one can have

d(er(T−t)Xt) = −rer(T−t)Xtdt+ er(T−t)dXt

= −rer(T−t)Xtdt+ er(T−t)(rXtdt+ αt(dSt − rStdt))

= er(T−t)αt(dSt − rStdt)

= d(er(T−t)αtSt)− er(T−t)Stdαt (2.7)

Thus, by integrating equation (2.7), one can obtain

XT = erTX0 + αTST − α0e
rTS0 −

∫ T

0
er(T−t)Stdαt
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If we choose the trading strategy αt and the portfolio value X0 at t = 0 as

αt =
1− e−r(T−t)

rT
, X0 = x =

1− e−rT

rT
S0 −K2e

−rT ,

respectively, then the portfolio value XT at t = T becomes 1
T

∫ T
0 Stdt−K2 and so the payoff

function (2.2) becomes h(XT −K1ST ). Refer to Večěr [8], and Fouque and Han [14]. Thus
the price at t = 0 can be represented by

P (0, s;T,K1,K2) = E∗ [e−rTh(XT −K1ST ) | S0 = s
]
.

with the portfolio process Xt.
Now, we obtain a dynamic law of the arithmetic Asian option price in a PDE form as shown

in the next theorem.

Theorem 2.1. By the change of numeraire ψt := Xt
St

, the arithmetic Asian option price at t = 0
under the CEV model (1) is given by

P (0, s;T,K1,K2) = su(0, ψ;T,K1,K2),

where ψ = x
s = 1−e−rT

rT − K2
s e

−rT and u(t, ψ;T,K1,K2) is the solution of the PDE

ut +
1

2
(ψ − αt)

2σ2sθ−2uψψ = 0

with the final condition u(T, ψ;T,K1,K2) = h(ψ−K1). Further, the price at arbitrary t > 0
satisfies

P (t, s;T,K1,K2) =
T − t

T
su(0, ψ;T,K1,K2).

Proof. From the Itô formula and the SDE (2.1), we obtain the SDEs

d(S−1
t ) = S−1

t

[
(σ2Sθ−2

t − r)dt− σS
θ
2
−1

t dW ∗
t

]
, dXt = St

[
rψtdt+ αtσS

θ
2
−1

t dW ∗
t

]
.

Then, using the Itô product rule, we have

dψt = Xtd(S
−1
t ) + S−1

t dXt + dXtd(S
−1
t )

= ψt

[
(σ2Sθ−2 − r)dt− σS

θ
2
−1

t dW ∗
t

]
+ rψtdt+ αtσS

θ
2
−1

t dW ∗
t − αtσ

2Sθ−2
t dt

= ψt

[
σ2Sθ−2

t dt− σS
θ
2
−1

t dW ∗
t

]
− αt

[
σSθ−2

t dt− σS
θ
2
−1

t dW ∗
t

]
= σS

θ
2
−1(αt − ψt)(dWt − σS

θ
2
−1

t dt)

= σS
θ
2
−1

t (αt − ψt)dW̃
∗
t ,

(2.8)
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where W̃ ∗
t is given by dW̃ ∗

t = dW ∗
t − σS

θ
2
−1

t dt. From the Girsanov theorem (cf. Oksendal
[20]), we change the probability measure P ∗ into a measure P̃ ∗ through

dP̃ ∗

dP ∗ = e−rT
ST
S0

= exp

[∫ T

0
σS

θ
2
−1

t dW̃ ∗
t − 1

2

∫ T

0
σ2Sθ−2

t dt

]
. (2.9)

Then, from (2.3) and (2.9), we have

P (0, s;T,K1,K2) = E∗ [e−rTh(XT −K1ST ) | S0 = s
]

= sE∗
[
e−rT

ST
S0
h(ψT −K1) | ψ0 = ψ

]
= sẼ [h(ψT −K1) | ψ0 = ψ] ,

where Ẽ denotes expectation with respect to the probability measure P̃ ∗.
Now, we introduce a function u defined by

u(t, ψ;T,K1,K2) = Ẽ[h(ϕT −K1) | ψt = ψ].

Then the option priceP (0, s;T,K1,K2) at t = 0 satisfiesP (0, s;T,K1,K2) = su(0, ψ;T,K1,K2).
Here, from the Feynman-Kac formula (cf. Oksendal [20]) and (2.8), u(t, ψ;T,K1,K2) satis-
fies the PDE

ut +
1

2
(ψ − αt)

2σ2sθ−2uψψ = 0

with a final condition given by u(T, ψ;T,K1,K2) = h(ψ−K1). If the solution u is substituted
into P (0, s;T,K1,K2) = su(0, ψ;T,K1,K2), then the option price P (t, s;T,K1,K2) at any
time t can be immediately determined by the aid of the following identity whose derivation can
be found at Fouque and Han [14].

P (t, s;T,K1,K2) =
T − t

T
P (0, s;T,K1,K2). (2.10)

�

3. PRICING UNDER SEV MODEL

In this section, the constant elasticity of variance is randomized and subsequently a dynamic
law of the price of Asian floating-strike option is obtained.

3.1. SEV Formulation. In the stochastic elasticity of variance (SEV) model of Kim et al.
[19], the elasticity of variance is assumed by a stochastic process in such a way that

dSt = rStdt+ σSγtt dW
∗
t ,

γt =
θ

2
+
√
ϵf(Yt), (3.1)

dYt =

[
1

ϵ
(m− Yt)−

ν
√
2√
ϵ
Λ(Yt)

]
dt+

ν
√
2√
ϵ
dẐ∗

t
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under a risk-neutral probability measure P ∗, where r, σ, θ, m and ν are positive constants,
and W ∗

t and Ẑ∗
t are Brownian motions correlated by d⟨W ∗

t , Ẑ
∗
t ⟩ = ρdt, and Λ represents the

market price of elasticity risk. When ρ is positive, Yt may explode to infinite, and so St may
fail to be a true martingale. Refer to Andersen & Piterbarg [24]. Also, based on the analysis of
the most financial data excluding some commodity markets, it’s observed that the correlation
between stock price and its volatility is negative. So, ρ is assumed to be negative. Furthermore,
it is considered as a constant for simplicity. For avoiding the non-existence of moments of
St, we assume that the function f have the condition that 0 < c1 ≤ f ≤ c2 < ∞ for some
constants c1 and c2.

As the Ornstein-Uhlenbeck process(OU) Yt is an ergodic process with an invariant distribu-
tion given by N(m, ν2), for the later sections, we denote the average ⟨ · ⟩ with respect to this
invariant distribution by

⟨g⟩ = 1√
2πν2

∫ +∞

−∞
g(y)e−

(y−m)2

2ν2 dy,

for any function g.
Now, we suppose that 0 < ϵ≪ 1 so that the process Yt reverts fast a mean. The introduction

of this process to finance by Fouque et al. [11] was motivated by an empirical analysis of
financial data (example, S&P 500 index). The process gives a quite useful analytic tool to deal
with the problems related to the valuation of financial derivatives. Refer to Fouque et al. [21].
Kim et al. [16] used it as a process for the elasticity of variance.

3.2. Price Dynamics. In this section, we extend Večěr’s dimension reduction technique intro-
duced by Fouque and Han [14] to obtain the option price in the form of two space dimensional
PDE. Since the option price under the SEV model depends on the stochastic processes St and
Yt (differently from the CEV case), the payoff function for the option has a generalized form
given by

P (0, s, y;T,K1,K2) = E∗
[
e−r(T−t)h

(
1

T

∫ T

0
Sudu−K1ST −K2

)
|S0 = s, Y0 = y

]
(3.2)

under a risk-neutral measure P ∗, where h has the condition (2.3).
Similarly with the previous section, we want to replicate an averaged process 1

t

∫ t
0 Sudu

with a portfolio Xt = αtSt + βte
rt. Here, αt is also supposed to be a non-random function.

Then applying the self-financing strategy to Xt yields

dXt = rXtdt+ αtσS
θ
2
+
√
ϵf(Yt)

t dW ∗
t . (3.3)

Let us choose αt and X0 as αt = 1−e−r(T−t)

rT and X0 = x = α0S0 + e−rTK2, respectively.
Then XT = 1

T

∫ T
0 Stdt−K2, and so the payoff function (3.2) becomes

P (0, s, y;T,K1,K2) = E∗ [e−rTh(XT −K1ST ) | S0 = s, Y0 = y
]

(3.4)

at t = 0.
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We define a probability measure P̃ ∗ by

dP̃ ∗

dP ∗ = e−rT
ST
S0

= exp

[∫ T

0
σS

1
2
(θ−2)+

√
ϵf(Yt)

t dW̃ ∗
t − 1

2

∫ T

0
σ2S

θ−2+2
√
ϵf(Yt)

t dt

]
. (3.5)

Now, we derive the option price as follows:

Theorem 3.1. By the change of numeraire ψt := Xt
St

, the arithmetic Asian option price at t = 0
under the SEV model is given by

P (0, s, y;T,K1,K2) = su(0, ψ, y;T,K1,K2),

where ψ = x
s = 1−e−rT

rT − K2
s e

−rT and u(t, ψ, y;T,K1,K2) sastisfies the PDE

ut +
1

2
(ψ − αt)

2σ2sθ−2+2
√
ϵf(y)uψψ +

ρν
√
2√
ϵ

(αt − ψ)σs
1
2
(θ−2)+

√
ϵf(y)uψy

+

(
1

ϵ
(m− y)− ν

√
2√
ϵ
(Λ(y)− ρσs

1
2
(θ−2)+

√
ϵf(y))

)
uy +

ν2

ϵ
uyy = 0

with the final condition u(T, ψ, y;T,K1,K2) = h(ψ − K1). Furthermore, the price at arbi-
trary t > 0 sastisfies

P (t, s, y;T,K1,K2) =
T − t

T
su(0, s, y;T,K1,K2).

Proof. By the Itô formula and (3.3), we have the SDEs

d(S−1
t ) = S−1

t

[
(σ2S

θ−2+2
√
ϵf(Yt)

t − r)dt− σS
1
2
(θ−2)+

√
ϵf(Yt)

t dW ∗
t

]
,

dXt = St

[
rψtdt+ αtσS

1
2
(θ−2)+

√
ϵf(Yt)

t dW ∗
t

]
.

Then, we obtain

dψt = Xtd(S
−1
t ) + S−1

t dXt + dXtd(S
−1
t )

= ψt

[
(σSθ−2+2

√
ϵf(Yt) − r)dt− σS

1
2
(θ−2)+

√
ϵf(Yt)

t dW ∗
t

]
+ rψtdt+ αtσS

1
2
(θ−2)+

√
ϵf(Yt)

t dW ∗
t − αtσ

2(Yt)S
θ−2+2

√
ϵf(Yt)

t dt

= ψt

[
σS

θ−2+2
√
ϵf(Yt)

t dt− σS
1
2
(θ−2)+

√
ϵf(Yt)

t dW ∗
t

]
− αt

[
σS

θ−2+2
√
ϵf(Yt)

t dt− σS
1
2
(θ−2)+

√
ϵf(Yt)

t dW ∗
t

]
= σS

1
2
(θ−2)+

√
ϵf(Yt)(αt − ψt)(dW

∗
t − σS

1
2
(θ−2)+

√
ϵf(Yt)

t dt)

= σS
1
2
(θ−2)+

√
ϵf(Yt)

t (αt − ψt)dW̃
∗
t ,

(3.6)



130 MIN-KU LEE

where W̃ ∗
t is given by dW̃ ∗

t = dW ∗
t − σS

1
2
(θ−2)+

√
ϵf(Yt)

t dt and it is a Brownian motion under
the measure P̃ ∗. Since d⟨W ∗

t , Ẑ
∗
t ⟩ = ρdt, Ẑ∗

t = ρW ∗
t +

√
1− ρ2Z∗

t for some independent
Brownian motion Z∗

t with W ∗
t . Then the process Yt satisfies the SDE

dYt =

[
1

ϵ
(m− Yt)−

ν
√
2√
ϵ

(
Λ(Yt)− ρσS

1
2
(θ−2)+

√
ϵf(Yt)

t

)]
dt

+
ν
√
2√
ϵ
(ρdW̃ ∗

t +
√

1− ρ2dZ∗
t ). (3.7)

From (2.3), (3.4) and (3.5), we have

P (0, s, y;T,K1,K2) = E∗ [e−rTh(XT −K1ST ) | S0 = s, Y0 = y
]

= sE∗
[
e−rT

ST
S0
h(ψT −K1) | ψ0 = ψ, Y0 = y

]
= sẼ∗ [h(ψT −K1) | ψ0 = ψ, Y0 = y] .

If we define a function u by

u(t, ψ, y;T,K1,K2) := Ẽ∗[h(ψT −K1) | ψt = ψ, Yt = y]. (3.8)

Then the option price at t = 0 can be represented byP (0, s, y;T,K1,K2) = su(0, ψ, y;T,K1,K2).
Applying the Feynman-Kac formula to (3.6) and (3.7), we obtain a PDE for u of (3.8) as

given in Theorem 3.1. Furthermore, the option price at t > 0 satisfies

P (t, s, y;T,K1,K2) =
T − t

T
P (0, s, y;T,K1,K2) =

T − t

T
su(0, s, y;T,K1,K2)

by the work of Fouque and Han [14].
�

4. ASYMPTOTIC EXPANSION

It is difficult to solve the PDE obtained by Theorem 3.1. In this section, we use an asymptotic
expansion method to obtain PDEs whose numerical solutions can be computed easily. So, we
suppose the solution of the form u =

∑∞
i=0 ϵ

i
2ui for solveing the PDE problem in Theorem

3.1.
First, the PDE problem for u can be rewritten as

ut +
1

2
(ψ − αt)

2σ2sθ−2+2
√
ϵf(y)uψψ

+
1√
ϵ

(
ρν

√
2(αt − ψ)σs

1
2
(θ−2)+

√
ϵf(y)uψy − ν

√
2(Λ(y)− ρσs

1
2
(θ−2)+

√
ϵf(y))uy

)
+

1

ϵ

(
(m− y)uy + ν2uyy

)
= 0

(4.1)
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with the final condition u(T, ψ, y;T,K1,K2) = h(ψ − K1). Applying the Taylor series ex-
pansion (cf. regular perturbation) to the PDE (4.1), we obtain(

1

ϵ
L00 +

1√
ϵ
L10 + (L11 + L20) +

√
ϵ(L12 + L21) + ϵ(L13 + L22)

)
u(t, ψ, y) = 0, (4.2)

where

L00 := (m− y)∂y + ν2∂yy

L1i := ρσν
√
2s

1
2
(θ−2) (log sf(y))

i

i!
((αt − ψ)∂ψy − ∂y)− δiν

√
2Λ(y)∂y, i = 0, 1, 2, · · ·

L20 := ∂t +
1

2
(ψ − αt)

2σ2sθ−2∂ψψ

L2i :=
1

2
(ψ − αt)

2σ2sθ−2 (2 log sf(y))
i

i!
∂ψψ, i = 1, 2, · · ·

where δ0 = 1 and δi = 0 for i = 1, 2, ... Putting the expansion u =
∑∞

i=0 ϵ
i
2ui into the PDE

(4.2) and the final condition, we obtain
1

ϵ
L00u0 +

1√
ϵ
(L00u1 + L10u0) + (L00u2 + L10u1 + L11u0 + L20u0)

+
√
ϵ(L00u3 + L10u2 + L11u1 + L20u1 + L12u0 + L21u0) = 0

(4.3)

with the final condition
∑∞

i=0 ϵ
i
2ui(T, ψ, y;T,K1,K2) = h(ψ −K1).

Now, we obtain desirable PDEs for u0 and u1.

Theorem 4.1. Suppose that ui, (i = 0, 1, 2, ...), does not increase as much as ui ∼ e
y2

2 as y
goes to infinity. Then u0 is a y-independent function and satisfies the PDE

L20u0(t, ψ;T,K1,K2) = 0, t < T,

u0(T, ψ;T,K1,K2) = h(ψ −K1).

Proof. The 1
ϵ term of (4.3) yields the following equation

L00u0 = 0.

The assumed growth condition on u0 leads that the solution u0 of this ODE doesn’t depend on
y, i.e., u0 = u0(t, ψ). The 1√

ϵ
term of (4.3) gives

L00u1 + L10u0 = 0.

Since the operator L10 has the partial derivative with respect to y in its every terms and u0 does
not depend on the variable y, we have L00u1 = 0 and so u1 is independent of the y variable.
By the y-independence of u0 and u1, the O(1) term of (4.3) becomes the PDE

L00u2 + L20u0 = 0.

From the solvability condition (cf. Ramm [22]) of this Poisson equation, we have L20u0 = 0.
Therefore, Theorem 4.1 is proved. �
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Continuously, we derive a PDE for the correction term u1 from the following theorem.

Theorem 4.2. Suppose that ui, (i = 0, 1, 2, ...), does not increase as much as ui ∼ e
y2

2 as y
goes to infinity. Then u1 is a y-independent function and satisfies the PDE

L20u1(t, ψ;T,K1,K2) = −⟨L21⟩u0(t, ψ;T,K1,K2), t < T,

u1(T, ψ;T,K1,K2) = 0,

where u0 is obtained by Theorem 4.1.

Proof. We have already found that u0 and u1 are independent on the variable y from the proof
of Theorem 4.1. Also, u2 is independent of y since the proof process of Theorem 4.1 gives
L00u2 = 0. Then, from the

√
ϵ term of (4.3), we obatin. L00u3 + L20u1 + L21u0 = 0 and the

solvability condition of this Poisson equation for u3 yields L20u1 + ⟨L21⟩u0 = 0. Hence, we
obtain Theorem 4.2. �

5. APPROXIMATE OPTION PRICE

This section investigates the influence of the stochastic elasticity of variance on the constant
elasticity of variance by using a numerical experiment.

In Section 4, we derived the first order approximation for u given by u(t, ψ, y;T,K1,K2) ≈
u0(T, ψ;T,K1,K2)+

√
ϵu1(t, ψ;T,K1,K2).We define the leading order term P0 and the first

order term P1 by

P0(t, s;T,K1,K2) =
T − t

T
su0(0, ψ;T,K1,K2),

P1(t, s;T,K1,K2) =
T − t

T
su1(0, ψ;T,K1,K2),

so that the option price P (t, s, y;T,K1,K1) at time t has the approximation

P (t, s, y;T,K1,K2) ≈ P0(t, s;T,K1,K2) +
√
ϵP1(t, s;T,K1,K2).

The accuracy of this approximation depends on the property of the payoff h. If the payoff
is sufficiently smooth, it is straightforward to find an approximation error in the pointwise
convergent sense. Otherwise, it needs a regularization of the payoff function as the case of
European vanilla options in Fouque et al. [23]. This paper checks a numerical error instead of
the theoretical proof of accuracy. See Figure 1 (c).

Now, we solve the PDEs for the leading order P0 and the correction P̃1 :=
√
ϵP1 by using

the finite difference method (the Crank-Nicolson method). The solution has the truncation
error given by O((∆t)2) +O((∆ψ)2) with ∆ = 0.005 and ψ = 0.0104. Here, the parameters
are given by r = 0.06, σ = 0.5, T = 1, K1 = 0, K2 = 2, ϵ = 0.01, and f(y) = ey is
chosen. Based on the observed financial data (such as S&P 500 index), we choose the value of
parameter θ by three values θ = 1.8, θ = 2, and θ = 2.2.

Figure 1 (a) shows the Asian option price P0 underlying the CEV model and Figure 1 (b)
shows the approximate price P0 + P̃1 under the SEV model. The CEV price also increases
as the elasticity θ becomes larger but the stochastic elasticity of variance tends to lower the



ARITHMETIC ASIAN OPTIONS WITH SEV 133

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S

P
0

 

 

θ = 1.8
θ = 2.0
θ = 2.2

(a) The CEV price

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S

P
0
+

P̃
1

 

 

θ = 1.8
θ = 2.0
θ = 2.2

(b) The approximate SEV price
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(c) The correction term P̃1

FIGURE 1. The price under the CEV model, and the approximate price under
the SEV models, and the correction term P̃1 of the SEV price; r = 0.06,
σ = 0.5, T = 1, K1 = 0, and K2 = 2

increase. In fact, Figure 1 (c) shows the correction term P̃1 which is negative and has a hump
shape in every case of θ. Here, the sign of P̃1 is determined by the choice of f , i.e., P̃1 has the
opposite sign to the sign of ⟨f⟩. Note that the lowering effect has a maximum value near the
strike price K2 and it is more pronounced as θ becomes larger.

Figure 2 shows the sensitivity of the correction term P̃1 to the asymptotic parameters f̄ . One
can observe that the correction term P̃1 decrease as the asymptotic parameter f̄ increases and
the slope is more large when the parameter θ is large. So one can figure out that the correction
term P̃1 is more sensitive to the asymptotic parameter as the parameter θ increases.
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FIGURE 2. The sensitivity of P̃1 to the asymptotic parameter f̄ ; S0 = 2.5,
r = 0.06, σ = 0.5, T = 1, K1 = 0, and K2 = 2

6. CONCLUSION

The SEV model has been devised based upon a direct observation on the market elasticity of
variance and successfully contributed to making up for the limitation of the CEV model for the
European vanilla option (path-independent option) price. From the standpoint of this success,
we price an Asian option (one of typical path-dependent options) under the SEV model by
using a dimension reduction technique and a singular-regular perturbation method. This study
finds that the CEV option price is somewhat over priced regardless of the elasticity parameter
θ. The degree of over valuation has a maximum value near the strike price K2. This may give
a remarkable feature of the SEV model in that Gamma, which is important due to the fact that
it corrects for the convexity of option value, is greatest approximately at-the-money.
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[8] J. Večěr, Unified pricing of Asian options, Risk, 15(6) (2002), 113–116.
[9] J. Cox, Notes on option pricing I: Constant elasticity of variance diffusions, (1975) Working paper, Stanford

University (Reprinted in Portf, J., 1996, manage 22, 15–17).
[10] S.L. Heston, Closed-form solution for options with stochastic volatility with applications to bond and currency

options, Rev. Financ. Stud., 6 (1993), 327–343.



ARITHMETIC ASIAN OPTIONS WITH SEV 135

[11] J.P. Fouque, G. Papanicolaou, and R. Sircar, Asymptotics of a two-scale stochastic volatility model, Equations
aux derivees partielles et applications, in honour of Jacques-Louis Lions, Gauthier-Villars, Paris, (1998), 517–
526.

[12] P. Carr, H. Geman, D. Madam, and M. Yor, Stochastic volatility for Levy processes, Math. Financ., 13(3)
(2003), 345–382.

[13] B. Peng, F. Peng, Pricing arithmetic Asian options under the CEV process, J. Econ. Financ. Adm. Sci., 15(29)
(2010), 7–13.

[14] J.P. Fouque and C.H. Han, Pricing Asian options with stochastic volatility, Quant. Financ., 3(5) (2003), 352–
362.

[15] D. Lemmens, L.Z. Liang, J. Tempere, and A. De Schepper, Pricing bounds for discrete arithmetic Asian
options under Levy models, Physica A, 389(22) (2010), 5193–5207.

[16] J.H. Kim, J.W. Lee, S.P. Zhu, and S.H. Yu, A multiscale correction to the Black−Scholes formula, Appl.
Stoch. Model. Bus. 30(6) (2014), 753–765.

[17] J.H. Yoon, J.H. Kim, and S.Y. Choi, Multiscale analysis of a perpetual American option with the stochastic
elasticity of variance, Appl. Math. Lett., 26 (2013), 670–675.

[18] S.J. Yang, M.K. Lee, and J.H. Kim, Portfolio optimization under the stochastic elasticity of variance, Stoch.
Dynam., 14(03) (2014), 1350024.

[19] J.H. Kim, J.H. Yoon, J. Lee, and S.Y. Choi, On the stochastic elasticity of variance diffusions, Econ. Model.,
51 (2015), 263–268.

[20] B. Oksendal, Stochastic Differential Equations. Springer, New York (2003).
[21] J.P. Fouque, G. Papanicolaou, R. Sircar, and K. Solna, Multiscale Stochastic Volatility for Equity, Interest Rate

and Credit Derivatives, Cambridge University Press, Cambridge (2011).
[22] A.G. Ramm, A simple proof of the Fredholm alternative and a characterization of the Fredholm operators,

Math. Assoc. America, 108 (2001), 855–860.
[23] J.P. Fouque, G. Papanicolaou, R. Sircar, and K. Solna, Singular perturbations in option pricing, SIAM J.

Appl. Math., 62(5) (2003), 1648–1665.
[24] L.B.G. Andersen and V.V. Piterbarg, Moment explosions in stochastic volatility models, Financ. Stoch., 11

(2007), 29–50.




