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TWO APPROACHES FOR STOCHASTIC
INTEREST RATE OPTION MODEL

JUNG-SooN HYUN AND Young-Hee Kt

ABSTRACT. We present two approaches of the stochastic interest
rate European option pricing model. One is a bond numeraire ap-
proach which is applicable to a nonzero value asset. In this ap-
proach, we assume log-normality of returns of the asset normalized
by a bond whose maturity is the same as the expiration date of an
option instead that of an asset itself. Another one is the expec-
tation hypothesis approach for value zero asset which has futures-
style margining. Bond numeraire approach allows us to calculate
volatilities implied in options even though stochastic interest rate
is considered.

1. Introduction

Since the seminal paper by Black-Scholes (3], option pricing models
have been dramatically developed. Almost all option pricing models
have been extended by ruling out restrictions imposed by Black-Scholes.
In order to price options by Black-Scholes formula, two market data are
needed, i.e., a risk-free interest rate and an underlying asset. Merton [10]
and Amin and Jarrow [1] derive close-form formulas of a European op-
tion for index and currency respectively, by assuming a stochastic inter-
est rate instead of a constant interest rate. As time varying volatility
models, Heston [6] and GARCH (see an e.g. [12]) models are most well
known. Meanwhile Heston assumes the stochastic volatility of returns
of an underlying asset which satisfies Ornstein-Uhlenbeck process, the
volatility of GARCH models is deterministic. In addition, Carr, Ge-
man, Madan and Yor [4] develop an option pricing model with stochastic
volatility Levy process.
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Even though there are fancy models as above, Black-Schole option
formula still seems to work well in financial industries. Probably parsi-
mony of the model is the main reason since there is only one parameter to
be estimated in Black-Scholes model. - In this paper we establish a simple
model with only one parameter like Black-Scholes model. Nonetheless
our model incorporates stochastic interest rate model. The basic idea is
to normalize underlying asset by a risk free bond price with the same
maturity as that of option. Our model is more realistic than Black-
Scholes model since the interest rate used in our model is the yield of
the bond matching maturity with the expiration of an option. It is obvi-
ous that an yield of the bond with one year time to maturity is different
from that of the bond with one month time to maturity. If an option
price is calculated in this way, then the model which people applies
is not Black-Scholes formula but other stochastic interest rate option
price formula. Moreover, in such a case, implied volatility has different
meaning from the volatility people usually think. As we will show later,
implied volatility does not represent the volatility of returns itself, but
that of excess log returns. This is a unique feature of approach one for
our model. Our model enables to calculate an implied volatility of an
option in this way (see Kim, Park and Hyun (8] for empirical implication
and test). This approach works well for non-zero value assets and the
idea of approach one is originally developed by Margrabe [9]. The other
approach is for value zero asset which has futures-style margining. Fu-
tures has non-zero price but zero value because of daily settlement. The
approach one can not be applied to such an asset since we are unable
to make a self-financing and risk-free portfolio with three assets such as
futures, option, and bond with the same maturity as that of an option.
Hence we need a stronger assumption for preference and assume a local
expectation hypothesis for bonds with any maturities. This argument is
an line with the methodology of Ramaswamy and Sundaresan [11] for a
futures option pricing.

The remainder of the paper is organized as follows. Section 2 de-
scribes our option pricing model under stochastic interest rates. In sec-
tion 3 we propose the other approach for value zero asset like futures.

2. Bond numeraire approach

Under a continuous time economy with the complete and frictionless
market, we evaluate a European call option with strike price K expiring
at time 7. We assume no dividend for simplicity. Let S(t) be the
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price of an underlying asset at time ¢t. At time ¢, B(¢,T) is denoted
by a price of the risk-free zero coupon bond with a payoff of $1 at the
maturity T" which is the same date with the option’s expiration date.
Sometimes B(7) is used to denote B(t,T), where 7 = T — t is time to
maturity. We introduce the underlying asset price normalized by the
bond price, F(t,T) defined by S(t)/B(¢t,T). It is known that F(t,T) is
a theoretical price of a forward price of the underlying asset. As in bond
price, both F(t,T) and F(r) are used for the normalized underlying
asset price. Different from the Black-Scholes model, we assume that the
fractional change of the normalized underlying asset price follows one
factor diffusion process, i.e.,

dF(r)
F(r)
where dW (t) is a Wiener process, u is the instantaneous expected rate
and o is the standard deviation of the fractional change of the normalized
underlying asset price.

If S(t) and B(t,T) are homogenous of degree 1, the option price

C(t,T,S(t), B(t,T)) becomes
C(t,T,S(t), B(t,T)) ol S(t) 1),
B(t,T) B(t,T)
For example, if S(t) and B(t,T) are both log-normal processes, then
they are homogenous of degree 1 and Merton model is one special case.
Since T is fixed for each option, C(¢,T, S(t), B(t,T)) can be rephrased
in terms of two variables 7 and F(7) as long as S(t) and B(7) are
homogenous of degree 1. Let us define V (7, F(7)) as a new option price
normalized by the numeraire, B(t,T), i.e.,
C(t,T,S(t), B(t,T)
B(t,T)

Let the fractional change of the normalized option price satisfy the fol-
lowing:

(2.1) = pdt + adW (t),

V(r,F(r)) =

dv(r, F
(2.2) T(T,’F_)) = adt + 6dW (1),
where dW(t) is a Wiener process, « is the instantaneous expected rate
and ¢ is the standard deviation of the fractional change of the normalized
option price. Similar to Merton’s method [10], we can make a risk-free
self-financing portfolio II; by investing w; amount for the normalized
option and ws amount for the normalized underlying asset. By equations
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(2.1) and (2.2), the change of instantaneous dollar return to the portfolio
Ht is
dll, dv dF

2 g — —_— = t).
0, wy % + wo 7 (wla + wap)dt + (w16 + wzd)dW( )

Since the portfolio is risk-free and self-financing, the next two simulta-
neous equations are hold.

wia+wop =0, wio+ wed =0.

In order to exist a nontrivial solution of the simultaneous equations
above, the determinant of the coefficient matrix should be zero and the
equation holds below.

(2.3) a/u=4d/o.

This equation implies that the ratio of expected rate to the standard
deviation of the normalized asset’s return equals to that of the normal-
ized option’s returns. On the other hand, by applying Ito’s lemma to
the normalized option V (7, F'), we have

1
dV = VpdF — Vydt + 5VFF(dF)2
1
= (uFVp = Vy + 502F2VFF)dt + o FViedW (t).

Comparing the equation (2.2) with the equation above, we can find a
restriction between coefficients of V (7, F') as follows:
o Ve = Vi + 30 F?Vip oFVr

v and 6 = v

Combining equation (2.4) with a restriction (2.3), the following partial
differential equation is satisfied.

(2.4)

1
(2.5) 502F2VFF =V;.

This is a simple heat equation whose solution is easily derived. Note
that at expiration date, S(T") = F(T,T) and so the payoff of the option
will be

(2.6) max[S — K] = max[F — K, 0],

which is the terminal condition for equation (2.5). To guarantee the
uniqueness of the solution we assume the following regularity condition,

(2.7) fim O 1,
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When F' approaches infinity, the price of underlying asset S approaches
infinity also since a bond price is bounded below 0. Hence equation (2.7)
means that the change of an option price is same as that of an underlying
asset price when the normalized underlying asset price increases without
a bound. This implies that finding the option price is equivalent to
solving the equations (2.5), (2.6), and (2.7). Therefore we can obtain
the option pricing formula in the Theorem below. We omit the precise
proof since it is similar to the proof of Theorem 3.1 in next section.

THEOREM 2.1. Suppose that the fractional change of the normalized
price of an underlying asset is satisfied by (2.1) and (2.7). Assume
that an underlying asset price S(t) and a bond price B(t,T) with the
same maturity as that of option are homogeneous of degree 1. Then a
European call option price with a strike price K and an expiration date
T is given by

O, T, S(t), B(t, T)) = SN (dy) — KB(t, T)N(d2),
where N(-) is the cumulative normal distribution function and

In(S(t)/KB(t,T)) + 0%(T — t)
dy = ’ 2 ; do=dy—oVT —1t.
1 ST 2 1
Proof. Applying the well known method solving a heat equation sat-
isfying the boundary conditions (2.6) and (2.7), the solution of (2.5) is
as follows:

V(r, F(7)) = F(T)N(d1) — KN (ds),
where N(-) is the cumulative normal distribution function and d; and
dy are given by

In(F(7)/K) + 20X(T — t)
dy = 2 dy=dy — VT —t.
1 Um s 2 1 2
Replacing F(r) and V (7, F) by S(t)/ B(t,T) and C(¢,T, S(t), B(t,T))/
B(t,T) respectively, the formula in the theorem is obtained. |

Note that the formula in the theorem is similar to that of Black-
Scholes for stock index option. Moreover, the formula is exactly the
same as that of Merton [10] for option pricing which assumes stochastic
interest rate. However, the meaning is different. In the case of Black-
Scholes option formula, volatility is the standard deviation of returns of
underlying asset itself. As for Merton’s case, the volatility is the mixture
of standard deviations and the covariance of returns of an underlying as-
set and interest rate. On the other hand, the volatility in equation (2.1)
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is the standard deviation of returns for forward prices of an underlying

asset and its meaning is clear below. Taking logarithm with F(¢,T),

S(t+1) i B(t+1,T)
5(t) B(t,T)

dinF(t,T)=InF(t+1,T) ~InF(t,T) =In

Hence the difference of In F'(¢,T) is a kind of premium which is the
excess log return. Since volatilities of %{% and dln F(t,T) are same
by Ito’s lemma, the volatility defined in equation (2.1) is that of a excess
log return as we already point out in Introduction. As mentioned above,
Merton model [10] is a special case of our result. When we impose the
assumption on log-normality for bond price dynamics, Merton’s formula
on a stock index option holds. Next Lemma shows that Merton’s as-
sumptions induce homogeneity of degree 1 in bond price and underlying
asset price.

LEMMA 2.1. Suppose that returns of an stock index and risk-free
domestic bond prices satisfy log-normal processes as follows:

ds(t) dB(t,T)
S(t) = /.let + UldWl(t), m = ,qut + 0'2dW2(t),

where (dW1(t), dW>(t)) = pdt. Then the stock price is homogeneous of
degree 1 with the bond price in calculating option price.

Proof. Recall Merton’s [10] solution for an index option given by
(2.8) C(t,T,S(t),B(t,T)) = S(t)N(d1) — KB(t,T)N(d2),

where N(-) is the cumulative normal distribution function, di and da
are given by
In(S(t)/KB(t,T)) + +5%(T - t)
d = ,
VT —t

dy=d; —EVT -t

and

Y= cr% + cr% — 2p0109.
Dividing both sides of the formula (2.8) by B(t,T'), the option price is

CT,5),B¢T) _ _SE)
2. = N — KN(d2).
29) B(t,T) B, 1) (d2)
Equation (2.9) and the definition of N(d;) show that the option price
depends only on the ratio S(t)/B(t,T). This fact implies that even if
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S(t) and B(t,T) move in distinct ways, the option price will not change
as long as the ratio does not. Hence we have
C(t,T,5(t),B(t,T))
B(,T)

_S@®) )
"B(t,T)

- C(t,T
a

The next Corollary shows that Merton model is nested in our model.

COROLLARY 2.2. Under the same assumptions as in Lemma 2.1, the
option price formula is given by
where N(-) is the cumulative normal distribution function, d; and dj
are given by
In(S(¢)/KB(t,T)) + 35%(T — t)

d = , do=d1 —3XVT -t
1 STT 3 2 1

and

(2.10) T =1/0? + 02 — 2poy0s.

Proof. The assertion will be easily obtained by Theorem 2.2 and
Lemma 2.1 since the normalized asset price process F'(t,T) is calculated
as follows:

dF(t,7) _ ztim)
F(,T) (( ))
=(M - %af + %U% — po10a)dt + (o1 dWi (t) — agdW2(t)).
Hence the standard deviation of F(¢,T') is £ given by (2.10). a

COROLLARY 2.3. Suppose that returns of a stock index price follow
a log normal process as in the Lemma 2.1. Moreover suppose that an
risk-free interest rate is constant and given by r. Then Black-Scholes
formula is obtained, i.e.,

C(t,T,8(t),r) = S(t)N(dy) — Ke " T N(dy),
where di and do are given by
In(S(t)/K) +
dy = n(5(t)/K) + 1(17” -i-tdl)( ), dy = dy — VT —1,
o1 -

Proof. Tt is obvious that Black-Scholes is a special case when ps =r
and o2 = 0 in Corollary 2.2. O




852 Jung-Soon Hyun and Young-Hee Kim

The theorem will hold when stock continuously pays dividend and the
dividend rate is known. The formula is similar to Merton’s dividend-
paying stock option formula. It is straightforward to apply the method
above to a European spot currency option. For currency assets, denote
S(t) by exchange spot rate of two currencies. Let Bf(t,T) and By(t,T)
be the price of the risk-free foreign and domestic zero coupon bonds
with a payoff of 1 with their own currencies at the maturity 7. Then
the forward rate of a spot rate is given by

S(t)B;s(t,T)
Bd (t’ T)
Making a self-financing risk-free portfolio similar to the argument above,

we can obtain a closed form formula for a European currency spot call
option price. The following theorem is stated without proof.

(2.11) F(t,T) =

THEOREM 2.4. Suppose that the forward price defined by (2.11) fol-
lows lognormal process, i.e.,

F(t,T
(2.12) D) _ oo+ saw ()
. T)

and the regularity condition holds similar to (2.7) as follows:
F—o0

Also assume that S(t)Bs(t,T) and By(t,T) are homogeneous of degree 1.
Then a European currency spot call option price is given by
(2.13)

where N(-) is the cumulative normal distribution function and

In(S(t)Bs(t,T)/KBy(t,T)) + 36%(T — t
dy = n(S() f(’ )/AB;(’t))_'_?a( ), dg:dl—a\'m_
o' —

Sometimes equation (2.12) is called UIP (uncovered interest rate par-
ity) deviation. UIP means that the expected value of return of spot rate
is equal to the spread between domestic and foreign interest rates. So
equation (2.12) implies that UIP does not hold and stochastically moves.
This assumption can be supported by many empirical documents (see
Hyun, Kim and Rhee [7]). It is obvious to see that the formula (2.13)
is the stochastic interest rate version of Garman-Kohlhagen currency
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option pricing formula [5]. When the term structure of foreign and do-
mestic interest rates are flat, we have the Corollary below. The proof is
similar to that of stock option price and omitted.

COROLLARY 2.5. Assume that returns of spot exchange rate evolves
as log-normal process and the volatility is given by og. Also we assume
that the foreign as well as the domestic interest rate are constant and
given by ry and rq, respectively. Then the Garman-Kohlhagen currency
call option formula holds, i.e.,

C(t> T, S(t)a Tfs Td) = e_rf(T—t)S(t)N(dl) - Ke_Td(T—t)N(d2),

where N(-) is the cumulative normal distribution function and

In(S/K) — 305(T -t VT =
di = E/K) :—d+:;f+t205( ), dy =d1 —osVT —t.
T

3. Expectation hypothesis approach

In contrast with a spot asset, futures is daily settled so that futures
value is always zero. According to futures price, cash inflow or outflow
occurs for both a holder and a seller for futures option. Such cash
inflow or outflow is called margin. This situation makes futures value
zero and allows us to invest amount of daily margin to a bond. This
is the main reason why bond numeraire approach can not be applied.
As in bond numeraire approach, if we consider only two assets which
are normalized futures and normalized option by bond, it is unable to
make a self-financing risk-free portfolio. In order to make a self-financing
portfolio, cash inflow or outflow should be daily invested to bonds. The
maturities of these bonds are not necessarily same as the expiration
date of the futures option. It is supposed to be rolled over everyday
since settlement happens everyday. If interest rate would be constant,
futures option would be treated in a similar way of stock or currency
option as in the previous section.

Hence we need to impose a certain type of preference for bonds as
in Ramaswamy and Sundaresan [11] which develop futures option price.
Ramaswamy and Sundaresan [11] defines a process for a stock index
which is the underlying asset of futures. However, we directly define a
process of futures since futures is traded in a market with its own price.
Also direct handle of futures will make error small. Therefore, we assume
that the local expectation hypothesis for bonds with any maturities s
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holds, i.e.,

(3.1) E(%) _ rdt,

where 7 is a expected rate of returns of bonds. This assumption implies
that the expected instantaneous holding period return on any default
free bond is equal to the prevailing risk-free rate. Let F(t,Tr) be a
futures price at ¢ whose delivery date of an underlying asset is Tr. Even
though we mention futures option only, the idea seems to work on any
option whose underlying is an asset having future-style margin. As in
Section 2, we assume a continuous time economy with complete and fric-
tionless market. In order to evaluate a European futures call option with
strike price K expiring at time T(< Tg), we assume that the fractional
change of futures price follows log-normal diffusion process, i.e.,

dF(t, TF)
F(t, TF)

where dW(t) is a Wiener process, ur is the instantaneous expected
rate and or is the standard deviation of the fractional change of the
normalized underlying asset price. We also assume that the fractional
change of the bond price which gives $1 at maturity T, follows log-normal
diffusion process, i.e.,

dB(t,T)
3.3 —2 =rdt + §dW>(t
(33) BT = "+ )
where dWs(t) is a Wiener process, r is the instantaneous expected rate
and ¢ is the standard deviation of the fractional change of the normal-
ized bond price. Allowing for the possibility of habitat and other term
structure effects, it is not assumed that dW; is perfectly correlated with

de, i.e.,

(3.4) (dW1(t), dWa(t)) = pdt,

where p may be less than 1 for Tr # T. Even though the volatility
term structure can be considered, we assume that volatility is constant

for simplicity. Then the stochastic interest rate version of option pricing
formula for futures option can be obtained.

(3.2) = ppdt + opdWi(t),

THEOREM 3.1. Suppose that the fractional change of the futures price
of an underlying asset is satisfied by (3.1)—(3.4). Then a European
futures call option price with the strike price K and expiration date T
is given by

C(t,T,F(t, Tr),B(t,T)) = F(t,Tr)e " T~ N(d)) — KB(t,T)N(dy),
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where N(-) is the cumulative normal distribution function and

_ In(F(t,Tr)/KB(t,T)) + (5% — r)(T — t) 3
= ¥, T—t2 , dg—dl—zpm

with ¥p = \/0'12;14-52 — 2pdoF.

Proof. By mimicking the argument of proof of Theorem 2.1, we can
make a self-financing risk-free portfolio II; with futures, option and
bonds with various maturities. Different from Theorem 2.1, the current
value of the portfolio is composed of option and bond only since the
value of future is currently zero. Let w;(i = 1,2,3) be weights invested
in futures F(t, Tr), option C(¢,T, F(t,Tr), B(t,T)) and bond B(t,T) in
order. Then a expected change of the portfolio is

E(dIl;) = E(undF + wadC + w3dB) = r(w2V + w3 B)dt.

Choosing the weights w; to make the portfolio risk-free, we have a par-
abolic equation below.

1o @C_ 1, 0°%C ?Cc _ac oCc
(3:50) 301" 5pat+30° B gpatelorFBgpaptrBypts =rC;
(3.5b) C(t,T,0, B(t,T)) = 0;

(3.50) C(T, T, F(T,Tr), 1) = max(0, F(T, Tr) - K).

Since futures and bond evolve as log-normal processes, two asset prices
are homogeneous of degree 1. So by the change of variables

_ F(t,Tr) Ct,T,F(t,Tr),B(t,T))
- KB(t,T) KB(t,T) ’
the equation (3.5) becomes
9 262h Oh  0Oh

and h(t,z) =

(3.6a) 221? 92 + 5= 0;
(3.6b) h(t,0) = 0;
(3.6¢) h(0,z) = max(0,z — 1),

where 2 = UF + 0% — 2pdor. Applying the change of variables to
equation (3.6a) once more as below

=logx, t=T-— and H(r,y) = h(t,x),

r
152
QZF
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we have a simple constant coefficient parabolic equation as follows:
0*H 2r OH OH

(37&) 8_y2 - (1 + ) ay 67' )
(3.7b) H(~00,0) =0;
(3.7¢) H(0,y) = max(0,e¥ — 1).

To solve equation (3.7), we try to find a trial solution. Let H(r,y) =
e¥ T y(r,y) be a trial solution. If we choose

= —(1 + 22 =) and b= ——(1 + —)2
then u(r,y) satisfies a simple heat equation as follows:

Ur = Uyy for —oco<y<oo, 7>0,
(3.8) u(0,y) = max(0, e~ — 7).

We know that the solution is

1 _-s?
u(T7 y) = 2\/—7?? )e y47‘ ds
\/27r /

The second equality holds by change of variable s = ¥y — v27x. By
putting initial condition (3.8) back, we have

u(ry) = /OO
YY) = /—271‘ _\/—%

Finally simple calculation of two integrals allows us to get a close form
of u(r,y) which is stated in the theorem by tracing change of variables
back. [

22
w(0,y + V2rx)e” 7 dx.

(e(l—a)(y-l-\/?_‘rw) _ e—a(y+\/§;m))e_%%dm.

The formula looks puzzling since two different bond prices come up.
As mentioned above, futures option is not only relatively priced but ab-
solutely because of preference. The first term, e~"(T~%) is shown because
of cash flow by daily settlement of futures and the second term B(t,T)
comes from relative pricing of option with respect to bond and under-
lying asset. When the risk-free interest rates are constant, the formula
for futures option price by Black [2] can be achieved.
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COROLLARY 3.2. When the risk-free interest rates are constant and
given by r, the futures option price formula is

Ct, F(t)) = e " T (F(t)N(d1) — KN(dp)),
where N (-) is the cumulative normal distribution function and

n r+ 307 -
! (F(t)/Kl: (T+_2t DT84 e/ TL

Proof. When the interest rate is constant and given by r, note that
B(t,T) = e"T=8 InB(t,T) = —r(T — t) and § = 0. The assertion
holds. n
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