• 제목/요약/키워드: virulence regulation

검색결과 76건 처리시간 0.031초

The fucose containing polymer (FCP) rich fraction of Ascophyllum nodosum (L.) Le Jol. protects Caenorhabditis elegans against Pseudomonas aeruginosa by triggering innate immune signaling pathways and suppression of pathogen virulence factors

  • Kandasamy, Saveetha;Khan, Wajahatullah;Kulshreshtha, Garima;Evans, Franklin;Critchley, Alan T.;Fitton, J.H.;Stringer, Damien N.;Gardiner, Vicki-Anne;Prithiviraj, Balakrishnan
    • ALGAE
    • /
    • 제30권2호
    • /
    • pp.147-161
    • /
    • 2015
  • Brown algal extracts have long been used as feed supplements to promote health of farm animals. Here, we show new molecular insights in to the mechanism of action of a fucose containing polymer (FCP) rich fraction from the brown seaweed Ascophyllum nodosum using the Caenorhabditis elegans-Pseudomonas aeruginosa PA14 infection model. FCP enhanced survival of C. elegans against pathogen stress, correlated with up-regulation of key immune response genes such as: lipases, lysozyme (lys-1), saponin-like protein (spp-1), thaumatin-like protein (tlp-1), matridin SK domain protein (msk-1), antibacterial protein (abf-1), and lectin family protein (lfp). Further, FCP caused down regulation of P. aeruginosa quorum sensing genes: (lasI, lasR, rhlI, and rhlR), secreted virulence factors (lipase, proteases, and elastases) and toxic metabolites (pyocyanin, hydrogen cyanide, and siderophore). Biofilm formation and motility of pathogenic bacteria were also greatly attenuated when the culture media were treated with FCP. Interestingly, FCP failed to mitigate the pathogen stress in skn-1, daf-2, and pmk-1 mutants of C. elegans. This indicated that, FCP treatment acted on the regulation of fundamental innate immune pathways, which are conserved across the majority of organisms including humans. This study suggests the possible use of FCP, a seaweed component, as a functional food source for healthy living.

Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of Listeria monocytogenes

  • Li, Honghuan;Qiao, Yanjie;Du, Dongdong;Wang, Jing;Ma, Xun
    • Journal of Veterinary Science
    • /
    • 제21권6호
    • /
    • pp.88.1-88.13
    • /
    • 2020
  • Background: Listeria monocytogenes is a gram-positive bacterium that causes listeriosis mainly in immunocompromised hosts. It can also cause foodborne outbreaks and has the ability to adapt to various environments. Peptide uptake in gram-positive bacteria is enabled by oligopeptide permeases (Opp) in a process that depends on ATP hydrolysis by OppD and F. Previously a putative protein Lmo2193 was predicted to be OppD, but little is known about the role of OppD in major processes of L. monocytogenes, such as growth, virulence, and biofilm formation. Objectives: To determine whether the virulence traits of L. monocytogenes are related to OppD. Methods: In this study, Lmo2193 gene deletion and complementation strains of L. monocytogenes were generated and compared with a wild-type strain for the following: adhesiveness, invasion ability, intracellular survival, proliferation, 50% lethal dose (LD50) to mice, and the amount bacteria in the mouse liver, spleen, and brain. Results: The results showed that virulence of the deletion strain was 1.34 and 0.5 orders of magnitude higher than that of the wild-type and complementation strains, respectively. The function of Lmo2193 was predicted and verified as OppD from the ATPase superfamily. Deletion of lmo2193 affected the normal growth of L. monocytogenes, reduced its virulence in cells and mice, and affected its ability to form biofilms. Conclusions: Deletion of the oligopeptide transporter Lmo2193 decreases the virulence of L. monocytogenes. These effects may be related to OppD's function, which provides a new perspective on the regulation of oligopeptide transporters in L. monocytogenes.

The cAMP/Protein Kinase A Pathway and Virulence in Cryptococcus neoformans

  • Kronstad, James W.;Hu, Guang-Gan;Choi, Jae-Hyuk
    • Mycobiology
    • /
    • 제39권3호
    • /
    • pp.143-150
    • /
    • 2011
  • The basidiomycete fungus Cryptococcus neoformans is an important pathogen of immunocompromised people. The ability of the fungus to sense its environment is critical for proliferation and the generation of infectious propagules, as well as for adaptation to the mammalian host during infection. The conserved cAMP/protein kinase A pathway makes an important contribution to sensing, as demonstrated by the phenotypes of mutants with pathway defects. These phenotypes include loss of the ability to mate and to elaborate the key virulence factors capsule and melanin. This review summarizes recent work that reveals new targets of the pathway, new phenotypic consequences of signaling defects, and a more detailed understanding of connections with other aspects of cryptococcal biology including iron regulation, pH sensing, and stress.

The Magas1 Gene is Involved in Pathogenesis by Affecting Penetration in Metarhizium acridum

  • Cao, Yueqing;Zhu, Xiangxian;Jiao, Run;Xia, Yuxian
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권7호
    • /
    • pp.889-893
    • /
    • 2012
  • Appressorium is a specialized infection structure of filamentous pathogenic fungi and plays an important role in establishing a pathogenic relationship with the host. The Egh16/Egh16H family members are involved in appressorium formation and pathogenesis in pathogenic filamentous fungi. In this study, a homolog of Egh16H, Magas1, was identified from an entomopathogenic fungus, Metarhizium acridum. The Magas1 protein shared a number of conserved motifs with other Egh16/Egh16H family members and specifically expressed during the appressorium development period. Magas1-EGFP fusion expression showed that Magas1 protein was not localized inside the cell. Deletion of the Magas1 gene had no impact on vegetative growth, conidiation and appressorium formation, but resulted in a decreased mortality of host insect when topically inoculated. However, the mortality was not significant between the Magas1 deletion mutant and wild-type treatment when the cuticle was bypassed by injecting conidia directly into the hemocoel. Our results suggested that Magas1 may influence virulence by affecting the penetration of the insects' cuticle.

Repressed Quorum Sensing by Overexpressing LsrR Hampers Salmonella Evasion from Oxidative Killing Within Macrophages

  • Choi, Jeong-Joon;Park, Joo-Won;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1624-1629
    • /
    • 2010
  • Bacterial cell-to-cell communication, termed quorum sensing (QS), leads to coordinated group behavior in a cell-density-dependent fashion and controls a variety of physiological processes including virulence gene expression. The repressor of the lsr operon, LsrR, is the only known regulator of LuxS/AI-2-mediated QS in Salmonella. Although lack of lsrR did not result in noticeable differences in Salmonella survival, the down-regulation of QS as a result of lsrR overexpression decreased Salmonella survival within macrophages. We found that impaired growth of Salmonella overexpressing lsrR within macrophages was due largely to its hypersensitivity to NADPH-dependent oxidative stress. This, in turn, was a result of decreased expression of genes involved in the oxidative stress response, such as sodA, sodCI, and sodCII, when lsrR was overexpressed. These results suggest that down-regulation of QS by excess LsrR can lower Salmonella virulence by hampering Salmonella evasion from oxidative killing within macrophages.

The Roles of Two hfq Genes in the Virulence and Stress Resistance of Burkholderia glumae

  • Kim, Jieun;Mannaa, Mohamed;Kim, Namgyu;Lee, Chaeyeong;Kim, Juyun;Park, Jungwook;Lee, Hyun-Hee;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • 제34권5호
    • /
    • pp.412-425
    • /
    • 2018
  • The Hfq protein is a global small RNA chaperone that interacts with regulatory bacterial small RNAs (sRNA) and plays a role in the post-transcriptional regulation of gene expression. The roles of Hfq in the virulence and pathogenicity of several infectious bacteria have been reported. This study was conducted to elucidate the functions of two hfq genes in Burkholderia glumae, a causal agent of rice grain rot. Therefore, mutant strains of the rice-pathogenic B. glumae BGR1, targeting each of the two hfq genes, as well as the double defective mutant were constructed and tested for several phenotypic characteristics. Bacterial swarming motility, toxoflavin production, virulence in rice, siderophore production, sensitivity to $H_2O_2$, and lipase production assays were conducted to compare the mutant strains with the wild-type B. glumae BGR1 and complementation strains. The hfq1 gene showed more influence on bacterial motility and toxoflavin production than the hfq2 gene. Both genes were involved in the full virulence of B. glumae in rice plants. Other biochemical characteristics such as siderophore production and sensitivity to $H_2O_2$ induced oxidative stress were also found to be regulated by the hfq1 gene. However, lipase activity was shown to be unassociated with both tested genes. To the best of our knowledge, this is the first study to elucidate the functions of two hfq genes in B. glumae. Identification of virulence-related factors in B. glumae will facilitate the development of efficient control measures.

Role of Alkaline Serine Protease, Asp, in Vibrio alginolyticus Virulence and Regulation of Its Expression by LuxO-LuxR Regulatory System

  • Rui, Haopeng;Liu, Qin;Wang, Qiyao;Ma, Yue;Liu, Huan;Shi, Cunbin;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권5호
    • /
    • pp.431-438
    • /
    • 2009
  • The alkaline serine protease asp, which was shown to be a virulence factor of Vibrio alginolyticus as a purified protein, was cloned from V. alginolyticus EPGS, a strain recently isolated from moribund Epinephelus coioides in an outbreak of vibriosis in a mariculture farm of Shenzhen. The asp null mutant was constructed by homologous recombination with suicide plasmid pNQ705-1. Compared with the wild-type strain, the asp null mutant exhibited a significant decrease of total extracellular protease activity, and caused a IS-fold decrease in virulence of V. alginolyticus. In our previous study, the luxO and $luxR_{val}$ genes from V. alginolyticus MVP01 were cloned and identified, and the luxO-$luxR_{val}$ regulatory couple was shown to regulate various genes expression, suggesting that it played a central role in the quorum sensing system of V. alginolyticus. In this study, the regulation of the asp gene was analyzed by using RT-PCR and quantitative real-time PCR methods; we proved that its transcription was greatly induced at the late stage of growth and was regulated by a luxO-$luxR_{val}$ regulatory system.

Genome-wide Screening to Identify Responsive Regulators Involved in the Virulence of Xanthomonas oryzae pv. oryzae

  • Han, Sang-Wook;Lee, Mi-Ae;Yoo, Youngchul;Cho, Man-Ho;Lee, Sang-Won
    • The Plant Pathology Journal
    • /
    • 제35권1호
    • /
    • pp.84-89
    • /
    • 2019
  • Two-component systems (TCSs) are critical to the pathogenesis of Xanthomonas oryzae pv. oryzae (Xoo). We mutated 55 of 62 genes annotated as responsive regulators (RRs) of TCSs in the genome of Xoo strain PXO99A and identified 9 genes involved in Xoo virulence. Four (rpfG, hrpG, stoS, and detR) of the 9 genes were previously reported as key regulators of Xoo virulence and the other 5 have not been characterized. Lesion lengths on rice leaves inoculated with the mutants were shorter than those of the wild type and were significantly restored with gene complementation. The population density of the 5 mutants in planta was smaller than that of PXO99A at 14 days after inoculation, but the growth curves of the mutants in rich medium were similar to those of the wild type. These newly reported RR genes will facilitate studies on the function of TCSs and of the integrated regulation of TCSs for Xoo pathogenesis.

Inhibition of Quorum Sensing Regulated Virulence Factors and Biofilm Formation by Eucalyptus globulus against Multidrug-Resistant Pseudomonas aeruginosa

  • Sagar, Pankaj Kumar;Sharma, Poonam;Singh, Rambir
    • 대한약침학회지
    • /
    • 제25권1호
    • /
    • pp.37-45
    • /
    • 2022
  • Objectives: The quorum-sensing-inhibitory and anti-biofilm activities of the methanol extract of E. globulus leaves were determined against clinically isolated multidrug-resistant Pseudomonas aeruginosa. Methods: The preliminary anti-quorum-sensing (AQS) activity of eucalyptus was investigated against a biosensor strain Chromobacterium violaceum ATCC 12472 (CV12472) by using the agar well diffusion method. The effect of sub-minimum inhibitory concentrations (sub-MICs) of the methanol extract of eucalyptus on different quorum-sensing-regulated virulence factors, such as swarming motility, pyocyanin pigment, exopolysaccharide (EPS), and biofilm formation, against clinical isolates (CIs 2, 3, and 4) and reference PA01 of Pseudomonas aeruginosa were determined using the swarm diameter (mm)-measurement method, chloroform extraction method, phenol (5%)-sulphuric acid (concentrated) method, and the microtiter plate assay respectively, and the inhibition (%) in formation were calculated. Results: The preliminary AQS activity (violacein pigment inhibition) of eucalyptus was confirmed against Chromobacterium violaceum ATCC 12472 (CV12472). The eucalyptus extract also showed concentration-dependent inhibition (%) of swarming motility, pyocyanin pigment, EPS, and biofilm formation in different CIs and PA01 of P. aeruginosa. Conclusion: Our results revealed the effectiveness of the E. globulus extract for the regulation of quorum-sensing-dependent virulence factors and biofilm formation at a reduced dose (sub-MICs) and suggest that E. globulus may be a therapeutic agent for curing and controlling bacterial infection and thereby reducing the possibility of resistance development in pathogenic strains.

박테리아의 히스톤 유사 단백질에 의한 유전자 발현 조절 (Regulation of gene expression by histone-like proteins in bacteria)

  • 박신애;이정신
    • 미생물학회지
    • /
    • 제54권1호
    • /
    • pp.1-8
    • /
    • 2018
  • 원핵 세포는 핵양체 결합 단백질(NAP)로 알려진 다양한 히스톤 유사 단백질을 가지고 있다. 이들은 DNA의 AT-rich 서열에 결합하여, DNA 자체를 감싸거나, 구부리거나, 떨어져 있는 DNA 가닥을 연결시키는 다리 역할을 하여, 결국에는 원핵 생물의 유전자 발현을 조절한다. NAP는 특히 전사의 억제 기능을 가지고 있기 때문에, 유전자 발현 억제에 있어서 이들의 역할과, 구체적인 메커니즘을 밝히는 것을 매우 중요한 일이다. 본 논문에서는 잘 알려져 있는 NAP인 H-NS와 HU에 대하여 정리하였고, 특히 E. coli와 Salmonella Typhimurium에서 이들의 유전자 발현에 대한 기능을 요약하였다. H-NS는 이들의 올리고머화와 필라멘트 구조 형성을 통하여 Salmonella와 같은 사람에 감염하는 병원성 세균의 독성유전자 발현을 억제할 수 있고, 이런 기능을 수행하였을 때 다른 NAP와 함께 작용할 수 있다. 최근에 H-NS는 사람에게 typhoid fever와 systemic disease를 발생시키는 독성물질인, typhoid toxin의 발현 또한 조절할 수 있음이 밝혀졌다. Salmonella에서 HU 또한 독성 유전자뿐만 아니라, 이들의 생리적 기능에 중요한 유전자들의 발현을 조절할 수 있다. 따라서, H-NS와 HU와 같은 NAP들이 원핵 생물의 독성 유전자 발현의 분자적인 메커니즘을 밝히는데 중요한 요소임을 제시한다.