Browse > Article
http://dx.doi.org/10.5941/MYCO.2011.39.3.143

The cAMP/Protein Kinase A Pathway and Virulence in Cryptococcus neoformans  

Kronstad, James W. (The Michael Smith Laboratories, Department of Microbiology and Immunology, Faculty of Land and Food Systems, University of British Columbia)
Hu, Guang-Gan (The Michael Smith Laboratories, Department of Microbiology and Immunology, Faculty of Land and Food Systems, University of British Columbia)
Choi, Jae-Hyuk (The Michael Smith Laboratories, Department of Microbiology and Immunology, Faculty of Land and Food Systems, University of British Columbia)
Publication Information
Mycobiology / v.39, no.3, 2011 , pp. 143-150 More about this Journal
Abstract
The basidiomycete fungus Cryptococcus neoformans is an important pathogen of immunocompromised people. The ability of the fungus to sense its environment is critical for proliferation and the generation of infectious propagules, as well as for adaptation to the mammalian host during infection. The conserved cAMP/protein kinase A pathway makes an important contribution to sensing, as demonstrated by the phenotypes of mutants with pathway defects. These phenotypes include loss of the ability to mate and to elaborate the key virulence factors capsule and melanin. This review summarizes recent work that reveals new targets of the pathway, new phenotypic consequences of signaling defects, and a more detailed understanding of connections with other aspects of cryptococcal biology including iron regulation, pH sensing, and stress.
Keywords
Cryptococcus neoformans; Signal transduction; Mating; Virulence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bicanic T, Wood R, Bekker LG, Darder M, Meintjes G, Harrison TS. Antiretroviral roll-out, antifungal roll-back: access to treatment for cryptococcal meningitis. Lancet Infect Dis 2005;5:530-1.
2 Kidd SE, Hagen F, Tscharke RL, Huynh M, Bartlett KH, Fyfe M, Macdougall L, Boekhout T, Kwon-Chung KJ, Meyer W. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci U S A 2004;101:17258-63.
3 Xue C, Hsueh YP, Chen L, Heitman J. The RGS protein Crg2 regulates both pheromone and cAMP signalling in Cryptococcus neoformans. Mol Microbiol 2008;70:379-95.
4 Bahn YS, Hicks JK, Giles SS, Cox GM, Heitman J. Adenylyl cyclase-associated protein Aca1 regulates virulence and differentiation of Cryptococcus neoformans via the cyclic AMP-protein kinase A cascade. Eukaryot Cell 2004;3:1476- 91.
5 Wang P, Cox GM, Heitman J. A Sch9 protein kinase homologue controlling virulence independently of the cAMP pathway in Cryptococcus neoformans. Curr Genet 2004;46: 247-55.
6 MacDougall L, Fyfe M. Emergence of Cryptococcus gattii in a novel environment provides clues to its incubation period. J Clin Microbiol 2006;44:1851-2.
7 Palmer DA, Thompson JK, Li L, Prat A, Wang P. Gib2, a novel Gbeta-like/RACK1 homolog, functions as a Gbeta subunit in cAMP signaling and is essential in Cryptococcus neoformans. J Biol Chem 2006;281:32596-605.   DOI   ScienceOn
8 Wang P, Cutler J, King J, Palmer D. Mutation of the regulator of G protein signaling Crg1 increases virulence in Cryptococcus neoformans. Eukaryot Cell 2004;3:1028-35.
9 Kidd SE, Chow Y, Mak S, Bach PJ, Chen H, Hingston AO, Kronstad JW, Bartlett KH. Characterization of environmental sources of the human and animal pathogen Cryptococcus gattii in British Columbia, Canada, and the Pacific Northwest of the United States. Appl Environ Microbiol 2007;73:1433- 43.
10 MacDougall L, Kidd SE, Galanis E, Mak S, Leslie MJ, Cieslak PR, Kronstad JW, Morshed MG, Bartlett KH. Spread of Cryptococcus gattii from British Columbia, Canada, and detection in the Pacific Northwest, USA. Emerg Infect Dis 2007;13:42-50.   DOI
11 Klose J, de $S\acute{a}$ MM, Kronstad JW. Lipid-induced filamentous growth in Ustilago maydis. Mol Microbiol 2004:52:823-35.
12 Alspaugh JA, Cavallo LM, Perfect JR, Heitman J. RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol Microbiol 2000;36:352-65.
13 Bahn YS, Cox GM, Perfect JR, Heitman J. Carbonic anhydrase and $CO_2$ sensing during Cryptococcus neoformans growth, differentiation, and virulence. Curr Biol 2005;15: 2013-20.
14 Kozubowski L, Lee SC, Heitman J. Signalling pathways in the pathogenesis of Cryptococcus. Cell Microbiol 2009;11: 370-80.
15 Love GL, Boyd GD, Greer DL. Large Cryptococcus neoformans isolated from brain abscess. J Clin Microbiol 1985;22:1068- 70.
16 Okagaki LH, Wang Y, Ballou ER, O'Meara TR, Bahn YS, Alspaugh JA, Xue C, Nielsen K. Cryptococcal titan cell formation is regulated by G-protein signaling in response to multiple stimuli. Eukaryot Cell 2011. http://dx.doi.org/10.1128/ EC.05179-11.
17 Gorner W, Durchschlag E, Wolf J, Brown EL, Ammerer G, Ruis H, Schuller C. Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J 2002;21:135-44.   DOI
18 Maeng S, Ko YJ, Kim GB, Jung KW, Floyd A, Heitman J, Bahn YS. Comparative transcriptome analysis reveals novel roles of the Ras and cyclic AMP signaling pathways in environmental stress response and antifungal drug sensitivity in Cryptococcus neoformans. Eukaryot Cell 2010;9:360-78.   DOI   ScienceOn
19 Kozubowski L, Heitman J. Profiling a killer, the development of Cryptococcus neoformans. FEMS Microbiol Rev 2011. http://dx.doi.org/10.1111/j.1574-6976.2011.00286.x.
20 Xue C, Hsueh YP, Heitman J. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 2008;32:1010-32.
21 Jung WH, Hu G, Kuo W, Kronstad JW. Role of ferroxidases in iron uptake and virulence of Cryptococcus neoformans. Eukaryot Cell 2009;8:1511-20.
22 Nichols CB, Perfect ZH, Alspaugh JA. A Ras1-Cdc24 signal transduction pathway mediates thermotolerance in the fungal pathogen Cryptococcus neoformans. Mol Microbiol 2007;63: 1118-30.
23 Kronstad JW, Attarian R, Cadieux B, Choi J, D'Souza CA, Griffiths EJ, Geddes JM, Hu G, Jung WH, Kretschmer M, et al. Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 2011;9:193- 203.
24 Pukkila-Worley R, Gerrald QD, Kraus PR, Boily MJ, Davis MJ, Giles SS, Cox GM, Heitman J, Alspaugh JA. Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot Cell 2005;4:190-201.
25 Klose J, Kronstad JW. The multifunctional beta-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis. Eukaryot Cell 2006:5:2047-61.
26 Bartlett KH, Kidd SE, Kronstad JW. The emergence of Cryptococcus gattii in British Columbia and the Pacific Northwest. Curr Infect Dis Rep 2008;10:58-65.
27 Mogensen EG, Janbon G, Chaloupka J, Steegborn C, Fu MS, Moyrand F, Klengel T, Pearson DS, Geeves MA, Buck J, et al. Cryptococcus neoformans senses $CO_2$ through the carbonic anhydrase Can2 and the adenylyl cyclase Cacl. Eukaryot Cell 2006;5:103-11.
28 Hu G, Steen BR, Lian T, Sham AP, Tam N, Tangen KL, Kronstad JW. Transcriptional regulation by protein kinase A in Cryptococcus neoformans. PLoS Pathog 2007;3:e42.   DOI
29 Jung WH, Sham A, White R, Kronstad JW. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans PLoS Biol 2006;4:e410.   DOI
30 Yoneda A, Doering TL. A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis. Mol Biol Cell 2006;17:5131-40.
31 Sorrell TC. Cryptococcus neoformans variety gattii. Med Mycol 2001;39:155-68.
32 Byrnes EJ 3rd, Li W, Lewit Y, Ma H, Voelz K, Ren P, Carter DA, Chaturvedi V, Bildfell RJ, May RC, et al. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog 2010; 6:e1000850.   DOI
33 Panepinto J, Komperda K, Frases S, Park YD, Djordjevic JT, Casadevall A, Williamson PR. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol 2009;71:1165-76.
34 Jung WH, Kronstad JW. Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cell Microbiol 2008; 10:277-84.
35 Buchanan KL, Murphy JW. What makes Cryptococcus neoformans a pathogen? Emerg Infect Dis 1998;4:71-83.   DOI
36 Chang YC, Kwon-Chung KJ. Isolation, characterization, and localization of a capsule-associated gene, CAP10, of Cryptococcus neoformans. J Bacteriol 1999;181:5636-43.
37 Chang YC, Penoyer LA, Kwon-Chung KJ. The second capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence. Infect Immun 1996;64:1977-83.
38 Cheon SA, Jung KW, Chen YL, Heitman J, Bahn YS, Kang HA. Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hxl1, for controlling pathogenicity of Cryptococcus neoformans. PLoS Pathog 2011;7:e1002177.   DOI
39 Tangen KL, Jung WH, Sham AP, Lian T, Kronstad JW. The iron- and cAMP-regulated gene SIT1 influences ferrioxamine B utilization, melanization and cell wall structure in Cryptococcus neoformans. Microbiology 2007;153(Pt 1):29-41.
40 Idnurm A, Bahn YS, Nielsen K, Lin X, Fraser JA, Heitman J. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat Rev Microbiol 2005;3:753-64.
41 Robertson LS, Causton HC, Young RA, Fink GR. The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci U S A 2000;97:5984-8.
42 Klengel T, Liang WJ, Chaloupka J, Ruoff C, $Schr{\ddot{o}}ppel$ K, Naglik JR, Eckert SE, Mogensen EG, Haynes K, Tuite MF, et al. Fungal adenylyl cyclase integrates $CO_2$ sensing with cAMP signaling and virulence. Curr Biol 2005;15:2021-6.
43 Vaden DL, Ding D, Peterson B, Greenberg ML. Lithium and valproate decrease inositol mass and increase expression of the yeast INO1 and INO2 genes for inositol biosynthesis. J Biol Chem 2001;276:15466-71.   DOI
44 Ding D, Greenberg ML. Lithium and valproate decrease the membrane phosphatidylinositol/phosphatidylcholine ratio. Mol Microbiol 2003;47:373-81.
45 Chaturvedi S, Dyavaiah M, Larsen RA, Chaturvedi V. Cryptococcus gattii in AIDS patients, southern California. Emerg Infect Dis 2005;11:1686-92.   DOI
46 Kwon-Chung KJ, Rhodes JC. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun 1986;51:218-23.
47 Alspaugh JA, Perfect JR, Heitman J. Cryptococcus neoformans mating and virulence are regulated by the G-protein a subunit GPA1 and cAMP. Genes Dev 1997;11:3206-17.
48 Hicks JK, Bahn YS, Heitman J. Pde1 phosphodiesterase modulates cyclic AMP levels through a protein kinase Amediated negative feedback loop in Cryptococcus neoformans. Eukaryot Cell 2005;4:1971-81.
49 Cramer KL, Gerrald QD, Nichols CB, Price MS, Alspaugh JA. Transcription factor Nrg1 mediates capsule formation, stress response, and pathogenesis in Cryptococcus neoformans. Eukaryot Cell 2006;5:1147-56.
50 Chrisman CJ, Albuquerque P, Guimaraes AJ, Nieves E, Casadevall A. Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages. PLoS Pathog 2011;7:e1002047.   DOI
51 Lee N, D'Souza CA, Kronstad JW. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu Rev Phytopathol 2003;41:399-427.
52 Zaman S, Lippman SI, Zhao X, Broach JR. How Saccharomyces responds to nutrients. Annu Rev Genet 2008;42:27-81.
53 Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME. Sensing the environment: lessons from fungi. Nat Rev Microbiol 2007;5:57-69.
54 Chang YC, Kwon-Chung KJ. Isolation of the third capsuleassociated gene, CAP60, required for virulence in Cryptococcus neoformans. Infect Immun 1998;66:2230-6.
55 D'Souza CA, Alspaugh JA, Yue C, Harashima T, Cox GM, Perfect JR, Hietman J. Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 2001;21:3179-91.
56 Zaragoza O, García-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A. Fungal cell gigantism during mammalian infection. PLoS Pathog 2010;6: e1000945.   DOI
57 D'Souza CA, Heitman J. Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 2001;25:349-64.
58 Pukkila-Worley R, Alspaugh JA. Cyclic AMP signaling in Cryptococcus neoformans. FEMS Yeast Res 2004;4:361-7.
59 Hicks JK, D'Souza CA, Cox GM, Heitman J. Cyclic AMPdependent protein kinase catalytic subunits have divergent roles in virulence factor production in two varieties of the fungal pathogen Cryptococcus neoformans. Eukaryot Cell 2004;3:14-26.
60 Kronstad JW. Virulence and cAMP in smuts, blasts and blights. Trends Plant Sci 1997;2:193-9.
61 Hogan DA, Sundstrom P. The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future Microbiol 2009;4:1263-70.
62 Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, $Chr{\acute{e}}tien$ F, Heitman J, Dromer F, Nielsen K. Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 2010;6:e1000953.   DOI
63 Alspaugh JA, Pukkila-Worley R, Harashima T, Cavallo LM, Funnell D, Cox GM, Perfect JR, Kronstad JW, Heitman J. Adenylyl cyclase functions downstream of the Galpha protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot Cell 2002;1:75-84.
64 O'Meara TR, Norton D, Price MS, Hay C, Clements MF, Nichols CB, Alspaugh JA. Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog 2010;6:e1000776.   DOI
65 Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009;23:525-30.
66 Bicanic T, Harrison TS. Cryptococcal meningitis. Br Med Bull 2005;72:99-118.   DOI
67 Casadevall A, Perfect JR. Cryptococcus neoformans. Washington, DC: ASM Press; 1998.
68 Mitchell TG, Perfect JR. Cryptococcosis in the era of AIDS: 100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 1995;8:515-48.
69 Xue C, Bahn YS, Cox GM, Heitman J. G protein-coupled receptor Gpr4 senses amino acids and activates the cAMPPKA pathway in Cryptococcus neoformans. Mol Biol Cell 2006;17:667-79.
70 Harashima T, Heitman J. Galpha subunit Gpa2 recruits kelch repeat subunits that inhibit receptor-G protein coupling during cAMP-induced dimorphic transitions in Saccharomyces cerevisiae. Mol Biol Cell 2005;16:4557-71.
71 Cruickshank JG, Cavill R, Jelbert M. Cryptococcus neoformans of unusual morphology. Appl Microbiol 1973;25:309-12.
72 Gorner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schüller C. Nuclear localization of the $C_2H_2$ zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 1998;12:586-97.