Browse > Article
http://dx.doi.org/10.7845/kjm.2018.8003

Regulation of gene expression by histone-like proteins in bacteria  

Park, Shinae (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
Lee, Jung-Shin (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
Publication Information
Korean Journal of Microbiology / v.54, no.1, 2018 , pp. 1-8 More about this Journal
Abstract
A prokaryotic cell has various histone-like proteins also known as nucleoid-associated proteins (NAPs). These proteins bind AT-rich sequence at DNA, which induce DNA wrapping, bending, and bridging, and subsequently regulate the gene expression in bacteria. Because NAPs function in transcriptional silencing of virulence genes, it is important to study their roles in gene silencing and specific mechanisms of these proteins. In this review, we discussed two well-known NAPs, H-NS, and HU, and summarized their roles for gene expression in Escherichia coli and Salmonella Typhimurium. Through the oligomerization and filamentation of H-NS, it represses the expression of virulence genes in human pathogenic bacteria, such as Salmonella Typhimurium, and it works with other NAPs positively or negatively. Recently, H-NS also regulates typhoid toxin expression, which causes typhoid fever and systemic disease in human. Additionally, HU regulates the expression of genes related to both virulence and physiology of Salmonella. Therefore, we suggest that NAPs like H-NS and HU are crucial factors to reveal the molecular mechanisms of virulence gene expression in bacteria.
Keywords
gene expression; histone-like protein; H-NS; HU; NAP;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jones, P.G., VanBogelen, R.A., and Neidhardt, F.C. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169, 2092-2095.   DOI
2 Kahramanoglou, C., Seshasayee, A.S., Prieto, A.I., Ibberson, D., Schmidt, S., Zimmermann, J., Benes, V., Fraser, G.M., and Luscombe, N.M. 2011. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res. 39, 2073-2091.
3 Kano, Y., Osato, K., Wada, M., and Imamoto, F. 1987. Cloning and sequencing of the HU-2 gene of Escherichia coli. Mol. Gen. Genet. 209, 408-410.   DOI
4 Kano, Y., Yoshino, S., Wada, M., Yokoyama, K., Nobuhara, M., and Imamoto, F. 1985. Molecular cloning and nucleotide sequence of the HU-1 gene of Escherichia coli. Mol. Gen. Genet. 201, 360-362.   DOI
5 Kotlajich, M.V., Hron, D.R., Boudreau, B.A., Sun, Z., Lyubchenko, Y.L., and Landick, R. 2015. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. Elife 4, e04970.
6 La Teana, A., Brandi, A., Falconi M., Spurio, R., Pon, C.L., and Gualerzi, C.O. 1991. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc. Natl. Acad. Sci. USA 88, 10907-10911   DOI
7 Lim, C.J., Lee, S.Y., Kenney, L.J., and Yan, J. 2012. Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing. Sci. Rep. 2, 509.   DOI
8 Liu, Y., Chen, H., Kenney, L.J., and Yan, J. 2010. A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes. Genes Dev. 24, 339-344.   DOI
9 Mangan, M.W., Lucchini, S., Croinin, T.O., Fitzgerald, S., Hinton, J.C., and Dorman, C.J. 2011. Nucleoid-associated protein HU controls three regulons that coordinate virulence, response to stress and general physiology in Salmonella enterica serovar Typhimurium. Microbiology 157, 1075-1087.   DOI
10 Lucchini, S., Rowley, G., Goldberg, M.D., Hurd, D., Harrison, M., and Hinton, J.C. 2006. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog. 2, e81.   DOI
11 Martinez, L.C., Banda, M.M., Fernandez-Mora, M., Santana, F.J., and Bustamante, V.H. 2014. HilD induces expression of Salmonella pathogenicity island 2 genes by displacing the global negative regulator H-NS from ssrAB. J. Bacteriol. 196, 3746-3755.   DOI
12 Miano, A., Losso, M.A., Gianfranceschi, G.L., and Gualerzi, C.O. 1982. Proteins from the prokaryotic nucleoid I. Effect of NS1 and NS2 (HU) proteins on the thermal stability of DNA. Biochem. Int. 5, 415-422.
13 Paytubi, S., Madrid, C., Forns, N., Nieto, J.M., Balsalobre, C., Uhlin, B.E., and Juarez, A. 2004. YdgT, the Hha paralogue in Escherichia coli, forms heteromeric complexes with H-NS and StpA. Mol. Microbiol. 54, 251-263.   DOI
14 Mitta, M., Fang, L., and Inouye, M. 1997. Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol. Microbiol. 26, 321-335.   DOI
15 Navarre, W.W., Porwollik, S., Wang, Y., McClelland, M., Rosen, H., Libby, S.J., and Fang, F.C. 2006. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313, 236-238.   DOI
16 Nieto, J.M., Madrid, C., Miquelay, E., Parra, J.L., Rodriguez, S., and Juarez, A. 2002. Evidence for direct protein-protein interaction between members of the enterobacterial Hha/YmoA and H-NS families of proteins. J. Bacteriol. 184, 629-635.   DOI
17 Nieto, J.M., Madrid, C., Prenafeta, A., Miquelay, E., Balsalobre, C., Carrascal, M., and Juarez, A. 2000. Expression of the hemolysin operon in Escherichia coli is modulated by a nucleoid-protein complex that includes the proteins Hha and H-NS. Mol. Gen. Genet. 263, 349-358.   DOI
18 Oberto, J., Nabti, S., Jooste, V., Mignot, H., and Rouviere-Yaniv, J. 2009. The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS One 4, e4367.   DOI
19 Rouviere-Yaniv, J. and Gros, F. 1975. Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli. Proc. Natl. Acad. Sci. USA 72, 3428-3432.   DOI
20 Schneider, D.A., Ross, W., and Gourse, R.L. 2003. Control of rRNA expression in Escherichia coli. Curr. Opin. Microbiol. 6, 151-156.   DOI
21 Ueguchi, C., Seto, C., Suzuki, T., and Mizuno, T. 1997. Clarification of the dimerization domain and its functional significance for the Escherichia coli nucleoid protein H-NS. J. Mol. Biol. 274, 145-151.   DOI
22 Schroder, O. and Wagner, R. 2000. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex. J. Mol. Biol. 298, 737-748.   DOI
23 Singh, K., Milstein, J.N., and Navarre, W.W. 2016. Xenogeneic silencing and its impact on bacterial genomes. Annu. Rev. Microbiol. 70, 199-213.   DOI
24 Spurio, R., Falconi, M., Brandi, A., Pon, C.L., and Gualerzi, C.O. 1997. The oligomeric structure of nucleoid protein H-NS is necessary for recognition of intrinsically curved DNA and for DNA bending. EMBO J. 16, 1795-1805.   DOI
25 Swinger, K.K., Lemberg, K.M., Zhang, Y., and Rice, P.A. 2003. Flexible DNA bending in HU-DNA cocrystal structures. EMBO J. 22, 3749-3760.   DOI
26 Ueda, T., Takahashi, H., Uyar, E., Ishikawa, S., Ogasawara, N., and Oshima, T. 2013. Functions of the Hha and YdgT proteins in transcriptional silencing by the nucleoid proteins, H-NS and StpA, in Escherichia coli. DNA Res. 20, 263-271.   DOI
27 Ueguchi, C., Suzuki, T., Yoshida, T., Tanaka, K., and Mizuno, T. 1996. Systematic mutational analysis revealing the functional domain organization of Escherichia coli nucleoid protein H-NS. J. Mol. Biol. 263, 149-162.   DOI
28 Walthers, D., Carroll, R.K., Navarre, W.W., Libby, S.J., Fang, F.C., and Kenney, L.J. 2007. The response regulator SsrB activates expression of diverse Salmonella pathogenicity island 2 promoters and counters silencing by the nucleoid-associated protein H-NS. Mol. Microbiol. 65, 477-493.   DOI
29 Amit, R., Oppenheim A.B., and Stavans, J. 2003. Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. Biophys. J. 84, 2467-2473.   DOI
30 Winardhi, R.S., Fu, W., Castang, S., Li, Y., Dove, S.L., and Yan, J. 2012. Higher order oligomerization is required for H-NS family member MvaT to form gene-silencing nucleoprotein filament. Nucleic Acids Res. 40, 8942-8952.   DOI
31 Arold, S.T., Leonard, P.G., Parkinson, G.N., and Ladbury, J.E. 2010. H-NS forms a superhelical protein scaffold for DNA condensation. Proc. Natl. Acad. Sci. USA 107, 15728-15732.   DOI
32 Bae, W., Jones, P.G., and Inouye, M. 1997. CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression. J. Bacteriol. 179, 7081-7088.   DOI
33 Balandina, A., Claret, L., Hengge-Aronis, R., and Rouviere-Yaniv, J. 2001. The Escherichia coli histone-like protein HU regulates rpoS translation. Mol. Microbiol. 39, 1069-1079.   DOI
34 Bannister, A.J. and Kouzarides, T. 2011. Regulation of chromatin by histone modifications. Cell Res. 21, 381-395   DOI
35 Dillon, S.C. and Dorman, C.J. 2010. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 8, 185-195.   DOI
36 Bloch, V., Yang, Y., Margeat, E., Chavanieu, A., Auge, M.T., Robert, B., Arold, S., Rimsky, S., and Kochoyan, M. 2003. The H-NS dimerization domain defines a new fold contributing to DNA recognition. Nat. Struct. Biol. 10, 212-218.   DOI
37 Bustamante, V.H., Martinez, L.C., Santana, F.J., Knodler, L.A., Steele-Mortimer, O., and Puente, J.L. 2008. HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2. Proc. Natl. Acad. Sci. USA 105, 14591-14596.   DOI
38 Cerdan, R., Bloch, V., Yang, Y., Bertin, P., Dumas, C., Rimsky, S., Kochoyan, M., and Arold, S.T. 2003. Crystal structure of the N-terminal dimerisation domain of VicH, the H-NS-like protein of Vibrio cholerae. J. Mol. Biol. 334, 179-185.   DOI
39 Claret, L. and Rouviere-Yaniv, J. 1997. Variation in HU composition during growth of Escherichia coli, the heterodimer is required for long term survival. J. Mol. Biol. 273, 93-104.   DOI
40 Dame, R.T., Luijsterburg, M.S., Krin, E., Bertin, P.N., Wagner, R., and Wuite, G.J. 2005. DNA bridging, a property shared among H-NS-like proteins. J. Bacteriol. 187, 1845-1848.   DOI
41 Dorman, C.J. and Deighan, P. 2003. Regulation of gene expression by histone-like proteins in bacteria. Curr. Opin. Genet. Dev. 13, 179-184.   DOI
42 Drlica, K. and Rouviere-Yaniv, J. 1987. Histonelike proteins of bacteria. Microbiol. Rev. 51, 301-319.
43 Gordon, B.R., Li, Y., Cote, A., Weirauch, M.T., Ding, P., Hughes, T.R., Navarre, W.W., Xia, B., and Liu, J. 2011. Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. Proc. Natl. Acad. Sci. USA 108, 10690-10695.   DOI
44 Ellermeier, J.R. and Slauch, J.M. 2007. Adaptation to the host environment, regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr. Opin. Microbiol. 10, 24-29.   DOI
45 Esposito, D., Petrovic, A., Harris, R., Ono, S., Eccleston, J.F., Mbabaali, A., Haq, I., Higgins, C.F., Hinton, J.C., Driscoll, P.C., et al. 2002. H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. J. Mol. Biol. 324, 841-850.   DOI
46 Fass, E. and Groisman, E.A. 2009. Control of Salmonella pathogenicity island-2 gene expression. Curr. Opin. Microbiol. 12, 199-204.   DOI
47 Fowler, C.C. and Galan, J.E. 2018. Decoding a Salmonella typhi regulatory network that controls typhoid toxin expression within human cells. Cell. Host Microbe 23, 65-76.   DOI
48 Giangrossi, M., Giuliodori, A.M., Gualerzi, C.O., and Pon, C.L. 2002. Selective expression of the beta-subunit of nucleoid-associated protein HU during cold shock in Escherichia coli. Mol. Microbiol. 44, 205-216.   DOI
49 Grainger, D.C. 2016. Structure and function of bacterial H-NS protein. Biochem. Soc. Trans. 44, 1561-1569.   DOI
50 Johansson, J. and Uhlin, B.E. 1999. Differential protease-mediated turnover of H-NS and StpA revealed by a mutation altering protein stability and stationary-phase survival of Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 10776-10781.   DOI