Browse > Article
http://dx.doi.org/10.4014/jmb.1008.08038

Repressed Quorum Sensing by Overexpressing LsrR Hampers Salmonella Evasion from Oxidative Killing Within Macrophages  

Choi, Jeong-Joon (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Park, Joo-Won (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Ryu, Sang-Ryeol (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.12, 2010 , pp. 1624-1629 More about this Journal
Abstract
Bacterial cell-to-cell communication, termed quorum sensing (QS), leads to coordinated group behavior in a cell-density-dependent fashion and controls a variety of physiological processes including virulence gene expression. The repressor of the lsr operon, LsrR, is the only known regulator of LuxS/AI-2-mediated QS in Salmonella. Although lack of lsrR did not result in noticeable differences in Salmonella survival, the down-regulation of QS as a result of lsrR overexpression decreased Salmonella survival within macrophages. We found that impaired growth of Salmonella overexpressing lsrR within macrophages was due largely to its hypersensitivity to NADPH-dependent oxidative stress. This, in turn, was a result of decreased expression of genes involved in the oxidative stress response, such as sodA, sodCI, and sodCII, when lsrR was overexpressed. These results suggest that down-regulation of QS by excess LsrR can lower Salmonella virulence by hampering Salmonella evasion from oxidative killing within macrophages.
Keywords
Salmonella Typhimurium; LsrR; oxidative stress response;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Janssen, R., T. van der Straaten, A. van Diepen, and J. T. van Dissel. 2003. Responses to reactive oxygen intermediates and virulence of Salmonella Typhimurium. Microbes Infect. 5: 527-534.   DOI   ScienceOn
2 Perrett, C. A., M. H. Karavolos, S. Humphrey, P. Mastroeni, I. Martinez-Argudo, H. Spencer, et al. 2009. LuxS-based quorum sensing does not affect the ability of Salmonella enterica serovar Typhimurium to express the SPI-1 type 3 secretion system, induce membrane ruffles, or invade epithelial cells. J. Bacteriol. 191: 7253-7259.   DOI   ScienceOn
3 Li, J., C. Attila, L. Wang, T. K. Wood, J. J. Valdes, and W. E. Bentley. 2007. Quorum sensing in Escherichia coli is signaled by AI-2/LsrR: Effects on small RNA and biofilm architecture. J. Bacteriol. 189: 6011-6020.   DOI   ScienceOn
4 Lucas, R. L. and C. A. Lee. 2000. Unravelling the mysteries of virulence gene regulation in Salmonella Typhimurium. Mol. Microbiol. 36: 1024-1033.   DOI   ScienceOn
5 Lumjiaktase, P., S. P. Diggle, S. Loprasert, S. Tungpradabkul, M. Daykin, M. Camara, P. Williams, and M. Kunakorn. 2006. Quorum sensing regulates dpsA and the oxidative stress response in Burkholderia pseudomallei. Microbiology 152: 3651-3659.   DOI   ScienceOn
6 Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Plainview, NY.
7 Pomposiello, P. J. and B. Demple. 2000. Identification of SoxSregulated genes in Salmonella enterica serovar Typhimurium. J. Bacteriol. 182: 23-29.   DOI   ScienceOn
8 Choi, J., D. Shin, and S. Ryu. 2007. Implication of quorum sensing in Salmonella enterica serovar Typhimurium virulence: The luxS gene is necessary for expression of genes in pathogenicity island 1. Infect. Immun. 75: 4885-4890.   DOI   ScienceOn
9 Chun, H., O. Choi, E. Goo, N. Kim, H. Kim, Y. Kang, J. Kim, J. Moon, and I. Hwang. 2009. The quorum sensing-dependent gene katG of Burkholderia glumae is important for protection from visible light. J. Bacteriol. 191: 4152-4157.   DOI   ScienceOn
10 Craig, M. and J. M. Slauch. 2009. Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella. PLoS One 4: e4975.   DOI   ScienceOn
11 Datsenko, K. A. and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 97: 6640-6645.   DOI   ScienceOn
12 Dunny, G. M. and B. A. Leonard. 1997. Cell-cell communication in Gram-positive bacteria. Annu. Rev. Microbiol. 51: 527-564.   DOI   ScienceOn
13 Ellermeier, C. D., A. Janakiraman, and J. M. Slauch. 2002. Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 290: 153-161.   DOI   ScienceOn
14 Chan, R. K., D. Botstein, T. Watanabe, and Y. Ogata. 1972. Specialized transduction of tetracycline resistance by phage P22 in Salmonella Typhimurium. II. Properties of a high-frequencytransducing lysate. Virology 50: 883-898.   DOI   ScienceOn
15 Chang, A. C. and S. N. Cohen. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134: 1141-1156.
16 Ammendola, S., P. Pasquali, F. Pacello, G. Rotilio, M. Castor, S.J. Libby, et al. 2008. Regulatory and structural differences in the Cu,Zn-superoxide dismutases of Salmonella enterica and their significance for virulence. J. Biol. Chem. 283: 13688-13699.   DOI   ScienceOn
17 Waters, C. M. and B. L. Bassler. 2005. Quorum sensing: Cellto-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319-346.   DOI   ScienceOn
18 Xavier, K. B. and B. L. Bassler. 2003. LuxS quorum sensing: More than just a numbers game. Curr. Opin. Microbiol. 6: 191-197.   DOI   ScienceOn
19 Xavier, K. B., S. T. Miller, W. Lu, J. H. Kim, J. Rabinowitz, I. Pelczer, M. F. Semmelhack, and B. L. Bassler. 2007. Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in enteric bacteria. ACS Chem. Biol. 2: 128-136.   DOI   ScienceOn
20 Pontes, M. H., M. Babst, R. Lochhead, K. Oakeson, K. Smith, and C. Dale. 2008. Quorum sensing primes the oxidative stress response in the insect endosymbiont, Sodalis glossinidius. PLoSOne 3: e3541.
21 Soncini, F. C., E. G. Vescovi, and E. A. Groisman. 1995. Transcriptional autoregulation of the Salmonella Typhimurium phoPQ operon. J. Bacteriol. 177: 4364-4371.
22 Taga, M. E., S. T. Miller, and B. L. Bassler. 2003. Lsr-mediated transport and processing of AI-2 in Salmonella Typhimurium. Mol. Microbiol. 50: 1411-1427.   DOI   ScienceOn
23 Vazquez-Torres, A. and F. C. Fang. 2001. Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol. 9: 29-33.
24 Vendeville, A., K. Winzer, K. Heurlier, C. M. Tang, and K. R. Hardie. 2005. Making 'sense' of metabolism: Autoinducer-2, LuxS and pathogenic bacteria. Nat. Rev. Microbiol. 3: 383-396.   DOI   ScienceOn