• Title/Summary/Keyword: virtual navigation

Search Result 381, Processing Time 0.037 seconds

Implementation of Simulator for Navigation Control System of Bimodal Tram (바이모달 저상굴절차량의 자동운전시스템을 위한 시뮬레이터 구현)

  • Ryu, Je;Hwang, Byoung-Il;Lee, Sang-Nam;Ryu, Hee-Moon;Byun, Yeun-Sub
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.424-432
    • /
    • 2009
  • This paper discusses about the implementation of a simulator for the Navigation Control System(NCS) of bimodal tram. To operate a NCS of bimodal tram, values of all sorts of sensors installed in bimodal tram should be transmitted to the NCS, and the NCS calculates the measured sensor values to determine traveling direction, traveling speed, current position etc. The implementation of the simulator consists of a device applying driver's input transaction function & virtual sensor program and a sub-rack device that controls communication with the NCS to evaluate navigation control function. The virtual sensor program can create routes (map), traveling profiles & seat information et cetera in order to transmit to the NCS, analyzes driver's input values and NCS output values to create virtual sensor values. The sub-rack device takes charge of communication with the NCS using CAN-OPEN, CAN-J1939, MVP protocols. This paper discusses about the implementation of the simulator and afterwards analyzes and evaluates the NCS simulation results.

  • PDF

Virtual Angioscopy for Diagnosis of Carotid Artery Stenosis (경동맥 협착증 진단을 위한 가상혈관경)

  • 김도연;박종원
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.821-828
    • /
    • 2003
  • The virtual angioscopy was implemented using MR angiography image of carotid artery Inside of the carotid artery is one of the body region not accessible by real optical endoscopy but can be visualized with virtual endoscopy. In order to determine the navigation path, we segmented the common carotid artery and internal carotid artery from the MR angiography image. We used the coordinates as a navigation path for virtual camera that were calculated from medial axis transformation. We used the perspective projection and marching cube algorithm to render the surface from volumetric MRA image data. A stroke occurs when brain cells die because of decreased blood flow to the brain. The carotid artery is the primary blood vessel that supplies the blood flow to the brain. Therefore, the carotid artery stenosis is the primary reason of stroke. The virtual angioscopy is highly recommended as a diagnosis tool with which the specific Place of stenosis can be identified and the degree of stenosis can be measured qualitatively. Also, the virtual angioscopy can be used as an education and training tool for endoscopist and radiologist.

The Study of developing the Avatar Tracker Using 3D Navigation (3D Navigation이 가능한 Avatar Tracker 개발에 관한 연구)

  • 이성태;최치석;이윤배
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1244-1251
    • /
    • 2003
  • In the paper, we develop the ‘Navigation Mechanism’ that can present the 3D space and trace the location in the user's viewpoint. Especially, using this mechanism, VRML tools are used to develop the virtual reality space in the internet. These mechanism can effectively represent the 3D virtual reality space and apply the many 3D related parts like architefure, education, entertainment and so on.

A Virtual Sailor Training Platform for Fire Drills on Ship (선박 화재 대응 훈련을 위한 가상 선원 훈련 플랫폼 개발)

  • Jung, Jin-Ki;Park, Jin-Hyoung
    • Journal of Navigation and Port Research
    • /
    • v.40 no.4
    • /
    • pp.189-196
    • /
    • 2016
  • We propose a virtual sailor training platform which supports emergency drills for ship's fire in virtual environment. Proposed platform not only enhances training efficiency by providing immersiveness, but also enables a consolidated virtual training due to the network-based multiplayer capabilities. Based on the offline fire simulation results using FDS and CFAST the platform visualizes a realistic fire spread in real-time. The training platform on the basis of the fire training material of the maritime safety education institute induces equipment proficiency and environment adaptation throughout immersive virtual environment in addition to procedure proficiency as well. In the implementation we showed that the equipment and environment controls and telepresence improve the training proficiency and enable collaborative virtual training that participates multiple trainees and induces cooperation for a common goal. Implementation of the platform demonstrated the skill mastery capability of the drill such as efficient fire apparatus controls and passenger controls.

Virtual Bronchoscopy for Diagnosis of Tracheo-Bronchial Disease (기관지질환 진단을 위한 가상내시경)

  • Kim, Do-Yeon;Park, Jong-Won
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.509-514
    • /
    • 2003
  • The virtual bronchoscopy was implemented using chest CT images to visualize inside of tracheo-bronchial wall. The optical endoscopy procedures are invasive, uncomfortable for patients and sedation or anesthesia may be required. Also, they have serious side effects such as perforation, infection and hemorrhage. In order to determine the navigation path, we segmented the tracheo-bronchial wall from the chest CT image. We used the coordinates as a navigation path for virtual camera that were calculated from medial axis transformation. We used the perspective projection and marching cube algorithm to render the surface from volumetric CT image data. The tracheobronchial disease was classified into tracheobronchial stenosis causing from inflammation or lung cancer, bronchiectasis and bronchial cancer. The virtual bronchoscopy is highly recommended as a diagnosis tool with which the specific place of tracheobronchial disease can be identified and the degree of tracheobronchial disease can be measured qualitatively, Also, the virtual bronchoscopy can be used as an education and training tool for endoscopist and radiologist.

Development of a Virtual Reference Station-based Correction Generation Technique Using Enhanced Inverse Distance Weighting

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 2015
  • Existing Differential GPS (DGPS) pseudorange correction (PRC) generation techniques based on a virtual reference station cannot effectively assign a weighting factor if the baseline distance between a user and a reference station is not long enough. In this study, a virtual reference station DGPS PRC generation technique was developed based on an enhanced inverse distance weighting method using an exponential function that can maximize a small baseline distance difference due to the dense arrangement of DGPS reference stations in South Korea, and its positioning performance was validated. For the performance verification, the performance of the model developed in this study (EIDW) was compared with those of typical inverse distance weighting (IDW), first- and second-order multiple linear regression analyses (Planar 1 and 2), the model of Abousalem (1996) (Ab_EXP), and the model of Kim (2013) (Kim_EXP). The model developed in the present study had a horizontal accuracy of 53 cm, and the positioning based on the second-order multiple linear regression analysis that showed the highest positioning accuracy among the existing models had a horizontal accuracy of 51 cm, indicating that they have similar levels of performance. Also, when positioning was performed using five reference stations, the horizontal accuracy of the developed model improved by 8 ~ 42% compared to those of the existing models. In particular, the bias was improved by up to 27 cm.

A Dynamic Adjustment Method of Service Function Chain Resource Configuration

  • Han, Xiaoyang;Meng, Xiangru;Yu, Zhenhua;Zhai, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2783-2804
    • /
    • 2021
  • In the network function virtualization environment, dynamic changes in network traffic will lead to the dynamic changes of service function chain resource demand, which entails timely dynamic adjustment of service function chain resource configuration. At present, most researches solve this problem through virtual network function migration and link rerouting, and there exist some problems such as long service interruption time, excessive network operation cost and high penalty. This paper proposes a dynamic adjustment method of service function chain resource configuration for the dynamic changes of network traffic. First, a dynamic adjustment request of service function chain is generated according to the prediction of network traffic. Second, a dynamic adjustment strategy of service function chain resource configuration is determined according to substrate network resources. Finally, the resource configuration of a service function chain is pre-adjusted according to the dynamic adjustment strategy. Virtual network functions combination and virtual machine reusing are fully considered in this process. The experimental results show that this method can reduce the influence of service function chain resource configuration dynamic adjustment on quality of service, reduce network operation cost and improve the revenue of service providers.

A Mobile Robot Navigation Method using Virtual Obstacle in indoor environment

  • Joe, Woong-Ryul;Park, Jung-Min;Park, Gui-Tae;Oh, Sang-Rok;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.59.6-59
    • /
    • 2001
  • A virtual obstacle method for escaping local minima encountered by sonar-based mobile robot navigation used in real-time obstacle avoidance is presented. The new algorithm judges the mobile robot falls into local minima and helps the mobile robot escape from Et, which regards a concave obstacle as convex or flat one, virtual obstacle method. In the algorithm, it starts to make virtual-obstacle when the mobile robot meets a certain condition, then the robot mores back slowly taking inside area of local minima as obstacle gradually The new algorithm is simulated. The experimental results are presented to demonstrate the usefulness of the method.

  • PDF

Virtual reality application on MFL gas pipeline inspection system

  • Kim, Jae-Joon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.4
    • /
    • pp.47-52
    • /
    • 2010
  • This paper describes a visualization technique that animates geometrical defect data that are extracted using a magnetic flux leakage (MFL) operating system on nondestructive evaluation (NDE). Since data are collected from different locations and often not regular, the data must be converted to the standard format that is used within the pipeline in visualization procedures. In order to navigate inside of the pipeline, 3D virtual objects are generated and are able to explore the pipeline continuously. The major objectives of this paper are to characterize, generate general shape of defects, and enable computer interaction in virtual environment. Pipeline navigation system (PNS) has introduced the framework for interactive visual applications based upon the principles of modeling 3D objects. PNS presents some preliminary efforts to enable the user to interact human and computer with each other.

The Efficacy of Biofeedback in Reducing Cybersickness in Virtual Navigation (생체신호 피드백을 적용한 가상 주행환경에서 사이버멀미 감소 효과)

  • 김영윤;김은남;정찬용;고희동;김현택
    • Science of Emotion and Sensibility
    • /
    • v.5 no.2
    • /
    • pp.29-34
    • /
    • 2002
  • Our previous studies investigated that narrow field of view (FOV : 50˚) and slow navigation speed decreased the frequency of occurrence and severity of cybersickness during immersion in the virtual reality (VR). It would cause a significant reduction of cybersickness if it were provided cybersickness alleviating virtual environment (CAVE) using biofeedback method whenever subject underwent physiological agitation. For verifying the hypothesis, we constructed a real-time cybersickness detection and feedback system with artificial neural network whose inputs are electrophysiological parameters of blood pulse volume, skin conductance, eye blink, skin temperature, heart period, and EEG. The system temporary provided narrow FOV and decreased speed of navigation as feedback outputs whenever physiological measures signal the occurrence of cybersickness. We examined the frequency and severity of cybersickness from simulator sickness questionnaires and self-report in 36 subjects. All subjects experienced VR two times in CAVE and non-CAVE condition at one-month intervals. The frequency and severity of cybersickness were significantly reduced in CAVE than non-CAVE condition. Virtual environment of narrow FOV and slow navigation provided by electrophysiological features based artificial neural network caused a significant reduction of cybersickness symptoms. These results showed that efficiency of a cybersickness detection system we developed was relatively high and subjects expressed more comfortable in the virtual navigation environment.

  • PDF