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1. INTRODUCTION

Among Global Positioning System (GPS) positioning 

methods, the accuracy of GPS-only positioning using 

code pseudorange is several meters to dozens of meters. 

However, if positioning is performed based on a Differential 

GPS (DGPS) method, the accuracy can be improved 

to approximately 1 meter. DGPS is a technique that 

corrects the GPS error at a user position by receiving the 

pseudorange correction for each satellite observed at a 

specific time from a reference station. To perform DGPS 

positioning, reference station infra that generates and 
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transmits DGPS correction is required. In Korea, a total of 32 

maritime reference stations, maritime integrity monitoring 

stations,  and inland reference stations have been 

established all over the country at 50 ~ 100 km intervals by 

the DGNSS Central Office of the Ministry of Oceans and 

Fisheries as of 2015, and they provide DGPS correction. In 

the case of single reference station-based DGPS positioning 

that is generally used, DGPS correction is received from one 

reference station. Accordingly, if the positions of a reference 

station and a user are close, the effect of the common error 

factor becomes large, and the DGPS positioning accuracy is 

improved. On the other hand, if the positions of a reference 

station and a user are distant, the effect of the common 

error factor becomes small, and the DGPS positioning 

accuracy deteriorates. To resolve this, many reference 

stations could be additionally installed, but it is inefficient 

because installation of a reference station requires a lot of 
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cost.

Multiple reference station-based DGPS positioning is 

a method that generates new correction at a user position 

based on the error correction of a number of reference 

stations through interpolation. When a reference station 

is far from a user, multiple reference station-based 

DGPS positioning could minimize the effect of baseline 

distance compared to single reference station-based 

DGPS positioning, and thus it has high accuracy. However, 

multiple reference station-based DGPS uses data from many 

reference stations, and the processing speed deteriorates 

as the number of used reference stations increases, which 

limits the actual application. Therefore, a technique that 

can minimize the number of used reference stations and 

can secure high positioning accuracy is needed.

In this study, domestic and foreign research trends 

for existing virtual correction generation methods that 

had been devised for multiple reference station-based 

DGPS positioning were introduced, and representative 

algorithms were implemented. Also, by supplementing 

the disadvantages of these methods, a model that can 

secure high DGPS positioning accuracy using a minimum 

number of reference stations was developed. To evaluate 

the positioning accuracy of the developed model, the 

horizontal RMS error and bias were compared with those of 

the existing techniques. The implemented algorithms were 

the inverse distance weighting that is widely used for the 

generation of DGPS virtual correction, the first- and second-

order multiple linear regression analyses suggested by 

Kim & Park (2011), the exponential function-based virtual 

correction generation technique suggested by Abousalem 

(1996), and the exponential function-based virtual 

correction generation technique suggested by Kim (2013).

2. EXISTING CORRECTION GENERATION 
TECHNIQUES BASED ON A VIRTUAL 
REFERENCE STATION

Virtual reference station-based DGPS positioning 

methods can be broadly classified into a position domain 

method, a state-space domain method, and a measurement 

domain method (Abousalem 1996). In the position domain 

method, a user performs single reference station-based 

positioning for each reference station using the correction 

received from many DGPS reference stations, and the 

calculated position information is corrected using a 

weighted mean. The position domain method has a simple 

processing procedure, but the accuracy is lower than those 

of the other methods.

In the state-space domain method, a user position is 

corrected by modeling the error at the user position for each 

error factor through analyzing the factor for causing the 

error of the GPS observation data received from a reference 

station. This method produces the most accurate result 

among the three methods, but the amount of calculation is 

large and the procedure is complicated.

In the measurement domain method, a user position 

is calculated by generating virtual correction at the user 

position using the correction received from many reference 

stations and by applying this to positioning. This method 

does not require a large amount of computation, and can 

obtain a certain level of positioning accuracy. In this study, 

virtual reference station correction generation algorithms 

developed in Korea and in foreign countries that correspond 

to the measurement domain method were implemented.

2.1 Inverse Distance Weighting (IDW)

In the inverse distance weighting method, the reciprocal 

of the baseline distance between a reference station and 

a user is assigned as a weighting factor, where a small 

weighting factor is assigned to a reference station with a 

long baseline distance from a user and a large weighting 

factor is assigned to a reference station with a short baseline 

distance from a user (Bae 2003). Fig. 1 shows the generation 

of the virtual correction of a rover station from a number of 

reference stations based on inverse distance weighting.

The method for generating new correction at a user 

position based on inverse distance weighting is expressed 

in Eq. (1). In Eq. (1), δ1 is the pseudorange correction of the 

l-th satellite at the user position generated through inverse 

distance weighting, and δρj
1 is the pseudorange correction 

Fig. 1. Generation of virtual correction based on inverse distance 
weighting.
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by taking the reciprocal of this (
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). In the equation, k is the number of reference stations used for the generation of 
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at a virtual reference station using first-order multiple linear regression analysis. A planar 

function is generated using the correction of multiple reference stations, and the planar 

position for the latitude and longitude of a virtual reference station is calculated based on new 
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Fig. 2. Conceptual diagram of first-order multiple linear regression analysis 
(Kim & Park 2011).
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3. ENHANCED CORRECTION GENERATION 
TECHNIQUE BASED ON A VIRTUAL 
REFERENCE STATION

The baseline distance between a reference station and 

a user has a large effect on DGPS positioning accuracy. As 

the baseline distance increases, the common error of the 

reference station and the user decreases, and the accuracy 

deteriorates. In foreign countries, DGPS reference stations 

are generally arranged at 300 ~ 1,000 km intervals; while 

in Korea, DGPS reference stations are arranged at 50 ~ 100 

km intervals which is relatively dense. Therefore, when 

a weighting factor is assigned based on inverse distance 

weighting similar to foreign countries, the effect is not large 

because the baseline distance difference between reference 

stations is not large. This problem can be resolved by 

effectively assigning a weighting factor through maximizing 

a small baseline distance difference. In this study, a new 

model was developed using an exponential function that 

can maximize a small difference in values.

The developed model regenerates DGPS correction at 

a user position based on inverse distance weighting using 

the error correction provided from a number of reference 

stations. The developed model can be expressed as Eqs. (8) 

and (9). In Eq. (8), wdj is the coefficient that varies depending 

on the baseline distance between the user and the j-th 

reference station, dj is the baseline distance between the 

user and the -th reference station, and avg (d) is the average 

baseline distance between the user and all the reference 

stations. By raising the reciprocal of distance to the power of 

wdj, a new weighting factor shown in Eq. (9) is generated. wj is 

the weighting factor for the j-th reference station correction.
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this prevents the coefficient wdj  from increasing exponentially. 
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reciprocal of distance to the power of wdj , a new weighting factor shown in Eq. (9) is 

generated. wj is the weighting factor for the j-th reference station correction. 

 
wdj = exp ( 𝑑𝑑𝑗𝑗

𝑎𝑎𝑎𝑎𝑎𝑎(𝑑𝑑))     (8) 

wj = ( 1
𝑑𝑑𝑗𝑗

)
𝑤𝑤𝑑𝑑𝑗𝑗

      (9) 

 
In the existing inverse distance weighting, simple reciprocal of distance is used as a 

weighting factor; while in the developed model, the reciprocal of distance is raised to the 

power of wdj (i.e., an exponential function-type coefficient), which increases the difference 

in the weighting factor depending on the distance. As the baseline increases, the coefficient 

wdj  basically increases in the form of an exponential function. However, the average 

baseline distance between a user and multiple reference stations (avg (d)) is considered, and 

this prevents the coefficient wdj  from increasing exponentially. 

For example, when the correction of a reference station with a long baseline distance 

from a user and the correction of a reference station with a short baseline distance are used to 

generate new correction at the user position, the reference station with a baseline distance that 

is longer than average has a relatively large wdj value than the reference station with a short 

baseline distance, based on Eq. (8). As a result, the exponent for the reciprocal of distance ( 1
𝑑𝑑𝑗𝑗

) ) is larger 

in Eq. (9), and thus the weighting factor for the reference 

station with a long baseline distance (wj) becomes small. On 

the other hand, the reference station with a short baseline 

distance has a value that is smaller than average, and thus 

wdj becomes relatively small. As a result, the weighting 

factor for the reference station with a short baseline distance 

(wj) becomes larger than that for the reference station with 

a long baseline distance. Thus, correction that is close to 

the actual amount of error at the user position is generated 

by preferentially reflecting the correction of the reference 

station with a short baseline distance, and more accurate 

positioning results could be obtained based on this.

4. EVALUATION OF THE ACCURACY OF 
THE DEVELOPED MODEL

In this study, virtual correction at a rover station was 

generated using a DGPS reference station network in 

Korea based on the existing correction generation models 

introduced in Chapter 2 and the new weighting factor model 

proposed in Chapter 3. First, the positioning accuracy of 

the model developed in this study was compared with that 

of the second-order multiple linear regression analysis 

(Kim & Park 2011) which has the highest accuracy among 

the existing algorithms. The positioning accuracy of the 

developed model was also compared with those of the 

first-order multiple linear regression analysis, the inverse 

distance weighting, the model of Abousalem (1996), and the 

model of Kim (2013), which have lower positioning accuracy 

than the second-order multiple linear regression analysis 

but can generate correction using only five reference 

stations. For the implemented algorithms, the second-order 

multiple linear regression analysis was expressed as Planar 

2, the first-order multiple linear regression analysis as 

Planar 1, the inverse distance weighting as IDW, the model 

of Abousalem (1996) as Ab_EXP, the model of Kim (2013) as 

Kim_EXP, and the model developed in the present study as 

enhanced inverse distance weighting (EIDW).

As described earlier, to generate correction using Planar 

2, more than six reference stations are required. In this 

study, to maximize the positioning accuracy of Planar 2 and 

EIDW, the positioning accuracies were compared using all 
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the 15 reference stations that had stably provided correction 

at the time of the positioning among the DGPS reference 

stations operated by the Ministry of Oceans and Fisheries. 

Fig. 3 shows the positions of the 15 reference stations used 

for the generation of correction. To judge whether stable 

positioning accuracy is secured at an arbitrary location in 

Korea, the Gangneung (KANR), Daegu (TEGN), Suncheon 

(SONC), and Yongin (YOIN) permanent stations operated 

by the National Geographic Information Institute were 

selected as the rover stations as shown in Fig. 3. The 

correction that had been generated at the 15 reference 

stations for about 4 hours and 30 minutes (from 22:40, 

December 20 to 02:17, December 21, 2014) was obtained, 

and virtual reference station-based DGPS positioning was 

performed by generating correction at the rover stations 

using Planar 2 and EIDW. For the GPS observation data, 

the Receiver Independent Exchange Format (RINEX) 

observation data of each rover station provided by the 

National Geographic Information Institute were used. The 

coordinates of the rover stations were calculated based on 

least squares estimation using the RINEX observation data, 

and the horizontal RMS error and bias were calculated 

using the notified coordinates provided by the National 

Geographic Information Institute as true values.

Table 1 summarizes the DGPS positioning results when 

the correction was generated by Planar 2 and EIDW, 

respectively, using data from the 15 reference stations. 

Planar 2 had a horizontal RMS error of 50 ~ 52 cm at each 

rover station, which showed a small deviation, and EIDW 

had a horizontal RMS error of 47 ~ 60 cm. The average 

horizontal RMS error of Planar 2 was 51 cm, and that of 

EIDW was 53 cm, indicating that the two models had 

similar horizontal positioning performances. In the case 

of the bias, the performances of Planar 2 and EIDW were 

not significantly different. For the north-south bias, the 

bias of EIDW was improved by 2 cm on average; and for 

the east-west bias, the average values were identical. The 

average of the biases in Table 1 was calculated by converting 

the biases of each rover station into absolute values. The 

analysis showed that the positioning performance of EIDW 

developed in this study was similar to that of Planar 2.

The Planar 2 algorithm requires at least six reference 

stations, while the other algorithms described in Chapter 

2 and EIDW can generate correction using less than six 

reference stations. A minimum of two reference stations can 

be used; but when the number of reference stations is small, 

the geometric arrangement of reference stations relative to a 

rover station is inefficient, which deteriorates the positioning 

accuracy. Therefore, in this study, positioning was 

performed by generating correction using only five reference 

stations so that minimum performance could be guaranteed 

while obtaining efficient geometric arrangement. The 

Fig. 3. Positions of the reference stations (●) and rover stations (✖) used 
for the DGPS positioning based on Planar 2 and EIDW.

Table 1. Analysis of the errors of the virtual reference station-based DGPS 
positioning using Planar 2 and EIDW (m).

Planar 2 EIDW
RMSE Bias RMSE Bias

H N-S E-W H N-S E-W
KANR
YOIN
TEGN
SONC
AVG.

0.50
0.50
0.51
0.52
0.51

 0.04
 0.15
-0.02
 0.03
 0.06

0.17
0.19
0.23
0.25
0.21

0.52
0.60
0.47
0.53
0.53

-0.01
 0.08
 0.03
-0.03
 0.04

0.15
0.35
0.06
0.26
0.21

Fig. 4. Positions of the reference stations (●) and rover station (✖) used 
for the DGPS positioning based on Planar 1, IDW, Ab_EXP, Kim_EXP, and 
EIDW.
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reference stations used in this study were Socheong (SOCH), 

Jeojin (JEOJ), Muju (MOOJ), Gageo (GAGE), and Yeongdo 

(YNDO); and they were selected so that a reference station 

network could be formed based on a minimum number of 

reference stations, as shown in Fig. 4. The correction that 

had been generated at each reference station from 22:40, 

December 20 to 02:17, December 21, 2014 was used, similar 

to the analysis performed earlier. The rover station used for 

the verification of positioning accuracy was the IHU3 station 

located at Building #4, Inha University.

Table 2 and Fig. 5 show the positioning results using the 

correction generated through Planar 1, IDW, Ab_EXP, Kim_

EXP, and EIDW. The results indicated that EIDW showed 

the highest positioning accuracy. The horizontal RMS error 

of EIDW decreased by 25 cm compared to that of Planar 1, 

indicating a higher positioning accuracy. This corresponds 

to a 42% improvement in the horizontal accuracy. Also, the 

north-south and east-west biases of EIDW decreased by 27 

cm and 16 cm, respectively, compared to those of Planar 

1. When EIDW was compared with IDW and Ab_EXP, the 

horizontal RMS error decreased by 15~17 cm, and the bias 

also decreased by 15 ~ 17 cm. When EIDW was compared 

with Kim_EXP, the horizontal RMS error decreased by 3 cm, 

and the bias was smaller. Therefore, it is thought that EIDW 

has superior positioning performance compared to the 

models developed in existing studies.

Fig. 6 shows the horizontal accuracy and bias of the 

DGPS positioning results using each algorithm. The 

existing algorithms had lower horizontal accuracies than 

the developed algorithm, and they were biased toward 

north and west. EIDW had a smaller bias than the existing 

algorithms, and thus the results were relatively densely 

distributed near the measuring point. Based on this, it was 

found that EIDW could perform positioning at a higher 

horizontal accuracy and a smaller bias compared to the 

models of existing studies.

5. CONCLUSION

In this study, domestic and foreign algorithms developed 

for multiple reference station-based DGPS positioning were 

introduced. Also, by supplementing the disadvantages of the 

introduced algorithms, a model that can secure improved 

positioning accuracy using a minimum number of reference 

stations was developed. To verify the performance of the 

developed model, the positioning accuracy was compared 

with those of the introduced algorithms. DGPS positioning 

based on second-order multiple linear regression analysis 

has high positioning accuracy, but it has the disadvantage of 

low positioning speed because at least six reference stations 

are needed to generate correction.

On the other hand, other algorithms developed in Korea 

and in foreign countries such as first-order multiple linear 

regression analysis, inverse distance weighting, the model 

of Abousalem (1996), and the model of Kim (2013) can 

Fig. 5. Horizontal RMS errors of the virtual reference station-based DGPS 
positioning at IHU3 depending on the type of algorithm.

Fig. 6. Horizontal accuracy of the virtual reference station-based DGPS 
positioning at IHU3 depending on the type of algorithm.

Table 2. Analysis of the errors of the virtual reference station-based DGPS 
positioning at IHU3 depending on the type of algorithm (m).

RMSE Bias
H N-S E-W

Planar 1
IDW
Ab_EXP
Kim_EXP
EIDW

0.60
0.52
0.50
0.38
0.35

0.47
0.37
0.35
0.22
0.20

-0.19
-0.17
-0.17
-0.08
 0.03
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generate correction using only five reference stations. The 

model developed in the present study can also generate 

correction using five reference stations, and correction that 

has been optimized for a rover station can be generated 

by improving the inverse distance weighting based on an 

exponential function.

When the positioning performances of the second-

order multiple linear regression analysis and the developed 

model were compared using 15 reference stations, the 

horizontal accuracy and bias of the developed model 

were similar to those of the second-order multiple linear 

regression analysis. Also, when the positioning accuracies 

of the first-order multiple linear regression analysis, the 

inverse distance weighting, the model of Abousalem 

(1996), the model of Kim (2013), and the model developed 

in the present study were compared using five reference 

stations, the horizontal accuracy of the developed model 

was improved by 42% and the bias decreased by 16 ~ 27 

cm compared to those of the first-order multiple linear 

regression analysis which showed the lowest positioning 

accuracy among the algorithms introduced in the present 

study. When the positioning accuracies of the model 

developed in the present study and the model of Kim (2013) 

which showed the highest accuracy among the existing 

techniques were compared, the horizontal accuracy of 

the model developed in the present study was improved 

by 8%, and the bias decreased by 2 ~ 5 cm, indicating a 

superior performance. The developed model has a simple 

algorithm, and shows outstanding positioning performance 

using a small number of reference stations. Also, it has 

higher positioning accuracy and lower bias compared to 

single reference station-based DGPS positioning or the 

existing multiple reference station-based DGPS algorithms. 

Therefore, it is thought that the developed model could be 

used for the fields requiring high positioning accuracy. In 

the future, additional analysis of the positioning accuracy 

that varies depending on the observation environment of 

a rover station or the geometric arrangement of reference 

stations when correction is generated using the model 

developed in this study is needed.
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