생체신호 피드백을 적용한 가상 주행환경에서 사이버 ogl미 감소 효과

The Efficacy of Biofeedback in Reducing Cybersickness in Virtual Navigation

김영은*·김은남*·정찬용*·고희동**·김현택*
Young-Youn Kim, Eun-Nam Kim, Chan-Yong Jung, Hee-Dong Go, Hyun-Taek Kim

Abstract: Our previous studies investigated that narrow field of view (FOV: 50°) and slow navigation speed decreased the frequency of occurrence and severity of cybersickness during immersion in the virtual reality (VR). It would cause a significant reduction of cybersickness if it were provided cybersickness alleviating virtual environment (CAVE) using biofeedback method whenever subject underwent physiological agitation. For verifying the hypothesis, we constructed a real-time cybersickness detection and feedback system with artificial neural network whose inputs are electrophysiological parameters of blood pulse volume, skin conductance, eye blink, skin temperature, heart period, and EEG. The system temporarily provided narrow FOV and decreased speed of navigation as feedback outputs whenever physiological measures signal the occurrence of cybersickness. We examined the frequency and severity of cybersickness from simulator sickness questionnaires and self-report in 36 subjects. All subjects experienced VR two times in CAVE and non-CAVE condition at one-month intervals. The frequency and severity of cybersickness were significantly reduced in CAVE than non-CAVE condition. Virtual environment of narrow FOV and slow navigation provided by electrophysiological features based artificial neural network caused a significant reduction of cybersickness symptoms. These results showed that efficiency of a cybersickness detection system we developed was relatively high and subjects expressed more comfortable in the virtual navigation environment.

Key word: Virtual Reality, Cybersickness, Electrophysiological Features, Biofeedback

요약: 이전 연구에서 가상현실에 응용되는 범위(시야(field of view : 150°)와 느린 운행속도(70km/sec)가 사이버 온미를 심화시킨다는 결과를 얻었다. 실험자의 90%가 좁은 시야(50°)와 느린 운행속도(30km/sec)에서 사이버 온미 증상이 적었다. 본 실험에서는 피험자가 생리적인 응주를 경험할 때마다 바이오패드 밸런스를 사용하여 사이버 온미 감소 가상환경(cybersickness alleviating virtual environment; CAVE)을 제시한 후, 그 효과를 관찰하였다. 피부전도도, 밸런스, 생리학적 신호, 피로 등을 입력하는 인공 신경망으로 구성된 실시간 피드백 시스템이 CAVE-제시 피드백 시스템을 구축하였다. 이 시스템들은 생리적 측정치들이 사이버 온미의 출현을 신호화할 때마다 피드백 출력으로 좁은 화면과 감소된 운행속도를 임시적으로 제공하였다. 피험자들을 대상으로 SSQ(simulator sickness questionnaire)와 자기보고를 이용하여 사이버 온미의 번도와 심각도를 조사하였다. 모든 피험자는 한 달 간격으로 CAVE 조건과 non-CAVE 조건에서 두 번 가상현실을 경험하였다. 사이버 온미의 번도와 심각도는 non-CAVE 조건보다 CAVE 조건에서 유의미하게 감소하였다. 즉, 전기 생리학적 측정치들에 기반한 인공 신경망에 의해 제공된 좁은 시야와 느린 운행의 가상환경은 사이버 온미 증상들을 감소시켰다. 이러한 결과들은 생체신호 피드백 시스템을 이용하여 인간 천재적 가상환경을 구축할 수 있는 가능성을 보인 것이다.

주요어: 가상현실, 온미, 생리신호, 바이오패드

*고려대학교 심리과
**한국과학기술연구원 영상미디어센터
1. 서론

가상현실은 인과 컴퓨터 상호작용을 통해 새로운 의사소통 매체를 제공한다. 가상현실은 실제로 교육, 의료, 오락, 예술, 과학 전반에 다양하게 활용되고 있으며, 인간과 컴퓨터의 상호작용을 위한 새로운 의사소통 매체로서 사회 전반에 입정난 변화를 가져올 것으로 기대되고 있다(3, 4). 가상현실은 인간과 컴퓨터 사이에 새로운 상호작용 페타디언을 제공하며, 사용자들은 더 이상 컴퓨터 화면상의 캐릭터나 이미지들에 대한 단순한 관찰자가 아니다. 사용자들은 컴퓨터가 만들어낸 3차원의 가상세계에 적극적으로 참여한다. 가상현실은 컴퓨터 그래픽 기법과 다양한 디스플레이, 자료입력 기법들에 하나로 통합되어 사용자에게 그 환경 내에 존재하거나 혹은 익숙해 있다는 느낌을 제공한다(1).

가상현실에 대한 실제적인 정의들이 많지만 단순하면서 가장 정확도 있는 것은 Burdea와 Coiffet의 3 I(3)를 들 수 있다. 가상현실의 3 I는 틀림(immersion), 상호작용(interaction), 상상(imagination)이라는 삼각형을 만든다. 이 중에서 틀림의 구현은 실제가 아닌 가상현실 환경을 사용자가 그 속에 있는 것처럼 해명하게 하기 힘든 점이다. 틀림은 현실세계 대신 가상현실에 주화를 두는 것을 말한다. 틀림현장은 시각적 상상력에 영향을 받는다. 인간은 시뮬레이션 장면, 그림, 사진 등의 영상과 상호작용으로 자동적으로 가상의 자산을 형성하게 되고, 마치 자기가 그 곳에 있는 것처럼 그 공간에 들어가게 된다. 즉, 가상현실 공간 내에 자신이 존재한다는 느낌은 틀림에서 가장 중요한 요소이다(5, 6).

가상현실 환경에서 틀림을 경험하는 사람들 대부분은 많은 개인적인 차이를 체험하게 되는데, 그 원인으로 내적인 요인과 외적인 요인을 들 수 있다. 내적인 요인으로는 가상현실 시스템에 틀림을 느낄 수 있는 개인의 능력 및 성격특성을 들 수 있고, 외적인 요인은 인간과 컴퓨터 상호작용에 필요한 가상현실 시스템의 기술적인 면을 의미한다. 예를 들어, 틀림은 시야(field of view; FOV)의 넓이가 60°보다 커야 체험할 수 있다고 보고되고 있다. 터치놀로지의 발달로 컴퓨터 속도가 빨라지고 장비의 고성능화가 이루어져서 기술적인 한계가 극복되면, 틀림의 방해요인이 제거될 것으로 기대한다. 현재는 HMD (head-mounted display)나 다체널 시스템을 이용하여 가상환경에서 사용자에게 틀림을 유도해 내고 있으며, 장비개발의 목적은 현실감, 효과성의 측면에서 많은 시간의 많은 양질의 정보를 사용자에게 제공하는 데 두고 있다.

가상현실의 장점을 노용하고 사용자가 가상현실을 이용하는 것을 방해하는 가장 큰 요인은 사이버 멸리(cybersickness)이다. 사이버 멸리는 가상현실에서 경험하는 멸리증상으로, 그 원인은 시각기판으로 들어오는 정보입력과 전정기판으로 들어오는 정보입력 사이의 불일치로 인해 형성된다는 정의가 널리 받아들여져 있다(10, 11). 또한, 사이버 멸리는 FOV나 화면 엔지니어링 속도 등의 시뮬레이터 요인에 의해 영향을 받게 된다. 시뮬레이터 요인의 변화가 가상현실에서 틀림, 상호작용, 상상의 측면에 영향을 미친 결과, 사용자에게 사이버 멸리를 유발하는 것으로 생각되고 있다(12).

우리의 이전 연구에서는 사이버 현실을 이용하는 이용자들에게 있어서 1) 가상현실을 경험하는 동안 다양한 생리적인 변화가 일어나는 것, 2) 사이버 멸리는 경험하는 동안 매우 독특한 생리적 변화가 일어나는 것, 3) 가상현실 시스템의 사이버 엔지니어링과 사이버 멸리에 영향을 미친다는 결과를 얻었다. FOV는 사용자의 위치에서 볼 수 있는 시야의 각도를 의미한다. 가상현실과 틀림에 따라 동안 피험자의 90%가 좋은 시야(50°)와 느린 운행속도에서 사이버 멸리 증상이 유의미하게 감소하거나 시야가 넓어졌으며 사이버 멸리의 단화가 나타난다. 그리고 운행속도가 빨라질수록 사이버 멸리가 정화되는 것으로 발견하였다.

본 연구에서는 가상현실 이용자에서 사이버 멸리의 나타내는 생리적 변화가 감출될 때마다 시각환경을 좌우하며 느린 운행속도로 전환하는 사이버 멸리 감소 가상환경(cybersickness alleviating virtual environment; CAVE)이 제시된다면 사용자가 멸리로 덮 느낄 것이라는 가설을 세웠다. 가설을 검증하기 위해서 본 연구로써, 다음으로는 6차 원활함, 6차 후목음, 6차 촉각, 6차 빌립, 6차 공감, 6차 기어의 원활성을 일으키는 인공 신경망
(artificial neural network)으로 구성된 실시간 면역 반응 시스템과 CAVE-체계 피드백 시스템을 구축하였다. 이 시스템들은 생리적 측정치들의 결과값을 바탕으로 면역 반응을 신호화 시나리오에 따라 피드백 과정으로 유포한 후 환자의 감소된 운행속도를 일시적으로 제공하였다. CAVE의 메시지에 실제 가상현실 이용자들의 사이버 메인을 감소시킨다는 점에서 SSQ(simulator sickness questionnaire)의 자기보고를 이용하여 검증함으로써 실시간 면역 반응 시스템과 CAVE-체계 피드백 시스템의 효율을 평가하였다.

2. 방 법

2.1 피험자와 실험정비

18-26세의 대학생 36명이 실험에 참가하였다. 실험에 참가한 대학생은 모두 약물중독이나 신경학적 장애가 없는 정상지식이었다. 실험 동안 대학생의 데이터를 Biopac(16-bit analog-to-digital system)를 사용하여 획득하였다. 10개 채널의 데이터를 Biopac의 MP-100(16-bit analog-to-digital system)을 사용하여 획득하였다. 10개 채널은 Fz(정중 전두부), Cz(정중 중심부), Pz(정중 두두부), O1(좌 후두부), O2(우 후두부) 영역의 뇌전위(electroencephalogram ; EEG) 5개 채널과 심전도(electrocardiogram ; ECG), 전액(Acc)등의 채널로 구성되었다. 가상현실 시스템은 KIST의 3D visual and auditory environment generator를 이용하여 구성하였다. 측정실의 환경은 3채널, 해상도: 3840×1024, constant 30frames/sec, 환경설정은 KIST의 건물, 주행도로, 산과 나무 등을 십플레이션한 환경으로 게임패드를 이용하여 주행하는 것이었다.

2.2 가상현실 평가 설문지

Motion history questionnaire, Immersive tendency questionnaire, Strong의 진정력 검사 중 능력, 성격 특성 부분, Presence questionnaire, Simulator sickness questionnaire, Flow questionnaire, Questionnaire for user interface satisfaction을 이용하여 설문지를 개발하였다. 설문지는 가상현실을 경험하기 전에 작성하는 사전 설문지와 가상현실을 경험한 다음에 작성하는 사후 설문지로 구성되었다. 사전 설문지는 피험자의 실내, 실외, 실외, 실내가 아닌 가상현실을 경험하고 난 후에 가상현실 평가하도록 하였다. 신뢰성을 검사하였고 Cronbach alpha값이 0.6 이상 되는 요인들을 이용하였다.

2.3 실시간 사이버 면역 반응 시스템과 CAVE

사이버 면역에 변화되는 생리 측정치로서 12개의 측량 쪽바, 알파, 베타, 감마의 상대파도, EOG의 표준편차, ECG의 heart period, STK의 평균, 표준편차, PPG의 평균, 표준편차, SCL의 평균, 표준편차의 28개 변수들이 입력되는 인공 신경망을 구성하였다. 정상기관과 면역기관의 반응의 값을 이용하여 training vectors를 구축하고 12개 principal vectors들을 획득하여 인공 신경망의 입력벡터로 이용하였다. 표준에 따라 backpropagation algorithm의 10 노드 hidden layer를 포함한 2-layer feedforward neural network을 활용하였다. 실험 중으로 생리신호를 측정하면서 위에서 설명한 인공 신경망을 이용하여 0-1의 면역 결과 값을 갖는 실시간 사이버 면역 반응 시스템을 구축하였다. 결과값 0.7을 역으로 하여 역직 이성일 때 CAVE가 제시하도록 하였다. CAVE는 vertical field는 90°로 일정하고 horizontal field는 150°의 사이에서 50°의 사이로 회면이 줄어드는 화면의 변화와, 속도를 줄이고 심호흡을 하려는 응용该游戏로 구성되어 있다.

2.4 실험절차

실험은 3단계로 사전 설문지 작성단계, 가상현실 운행단계, 사후 설문지 작성단계로 이루어졌다. 사전 설문지와 사후 설문지 작성단계는 7분 정도 소요되었다. 9 분 30초 동안 진행되는 가상현실 운행단계에서 피험자들은 시뮬레이션된 KIST 가상현실을 운행하면서 10개의 목표물에 도달하는 시각적 과제를 수행하였다. 이 과정 동안 데이터를 수집하고 후에 분석하였다.
하였다. 모든 피험자는 한 달 간격으로 CAVE 조건과 non-CAVE 조건에서 두 번 가상현실을 경험하였다.

2.5 데이터 수집

EEG는 국제 10/20법으로 A1, A2를 기준으로 측정하였고, 심전도는 lead II법으로 측정하였으며, 안전히는 오른쪽 눈에 위치, 아래 수직범으로 측정하였다. PPG 는 오른쪽 소지 셀 센서 마디에서 측정하고 SCL은 오른 쪽 약지 센서 마디에서 측정하였으며, SCL은 오른쪽 검지, 중지 셀 센서 마디에서 측정하였다.

가상 현실 제시 전 1분간 기저신호를 측정하고 가상 현실이 제시되는 9분 30초, 가상 현실 제시 후 1분 동안의 생리신호를 측정하였다. 생리신호 데이터는 400 samples/sec로 샘플링되었다. EEG 데이터는 band pass filter(0~50Hz)로 필터링되었고 움직임과 관련된 artifact를 제거하였다. FFT (fast fourier transform)를 이용하여 스펙트럼 분석을 하고 덴타, 세타, 알아, 베타, 감마파의 파워를 전체 영역의 파워로 나누고 100 을 곱하여 상대파워 백분율을 구한다. EEG 데이터는 R-peak를 검출하여 heart rate, heart period (interbeat interval)을 구하였다. EOG 데이터에서는 눈 감박임을 검출하였고, PPG는 진폭을 구하였으며, SCL과 SCL는 평균을 구하였다. 시각과 과세 수행도는 10개의 전체 목표를 총 빈도를 정확히 맞춘 수를 이용하여 적중률을 계산하였다.

2.6 통계분석

실수치 분석은 범위감소 피드백에 따른 일원 반복측정 변량분석을 하였다.

3. 결과

3.1 면역 보고 수

CAVE 조건의 non-CAVE 조건보다 면역 수가 유의미하게 증가하였다(F(1, 22)=18,25, p<.001) (그림 1). non-CAVE 조건에서 피험자들은 평균 8회 이상의 면역을 보고하였는데 반해, CAVE 조건에서는 평균 3회로 면역 보고 수가 현저하게 줄어들었다.

3.2 자기보고와 설문결과 성적

모든 피험자가 CAVE 조건과 non-CAVE 조건을 경험하기 때문에 두 번의 가상 현실이 끝난 다음에 두 조건 중에서 어느 조건의 가상 현실이 더 편안하였는지와 어느 조건의 가상 현실이 더 현실감이 있었는지를 질문하였다. 그 결과 CAVE 조건이 더 편안하다고 응답한 피험자가 28명으로 나타났고 non-CAVE 조건이 더 편안했다고 응답한 피험자는 8명으로 나타나서 가상 현실에서의 '편안감'은 피드백 제시조건에서 더 높게 나타났다(그림 2). 그리고 CAVE 조건이 더 현실감이 있다고 응답한 피험자 수가 11명으로 나타나서 non-CAVE 조건이 더 현실감 있다고 응답한 피험자는 25명으로 나타나서 가상 현실에서의 ' 현실감'은 피드백 비제시 조건에서 더 높게 나타났다(그림 3). 제미도에 있어서는 CAVE 조건이 더 제미있었다고 응답한 피험자 수가 17명, non-CAVE 조건은 19명의 피험자가 더 제미있다고 응답함으로써 가상 현실에서의 제미도에 있어서는 두 조건간에 큰 차이가 없었다.
4. 논의

밑미 보고 수 비교를 보면 CAVE(밑미감소 피드백 제시) 조건에서 밑미 보고 수가 유의미하게 감소하였다. 가상현실을 경험하고 난 후에 실험하는 도중 설명지 검사결과에서는 가상현실 경험에 대한 부정적 평가와 가상현실 운행에서 나타나는 신체적 불편감을 측정한 두 요인 모두에서 CAVE 조건이 non-CAVE 조건보다 낮은 평균을 나타내었다. 가상현실의 편안함 검사에서도 CAVE 조건이 non-CAVE 조건보다 더 높았다. 이는 여러 가지 각 점자들은 모두 CAVE 조건이 가상현실을 운행하기에 있어서 신체적으로 편안하고 실제로 불편을 줄이는 데 효과가 있다고 느는 것을 일관되게 보여 주었다. CAVE 조건은 생리검사와 성격적 특성, 신경학적 특성으로 모두 강화된 수리적 특성으로 150시야에서 50시야를 제시하고 속도를 줄이고 심호흡을 하거나 지시가 제시되는 조건이다. 자가보고와 실험 검사 성적은 피드백 제시조건이 효과적으로 사용되는 것을 보여준다.

그러나 가상현실의 측정은 모두에서 있어서는 non-CAVE 조건이 CAVE 조건보다 더 편안하다고 응답한 사람의 수가 더 많았다. 밑미감소 피드백 적용은 밑미를 줄이는 데 효과적일 수 있으나 가상현실의 현실감에는 부정적으로 작용했기 때문인 것으로 보인다. 피드백을 통해 밑미가 줄었으나 피드백이 가상현실에 운용하는 것을 방해하였어서, 그 결과 가상현실의 현실감이 떨어진 것으로 생각된다. 피드백을 제시 받았을 때 실제로 밑미가 줄어들었는지, 동일 보고 양미감소 피드백이 밑미를 줄이는 데 효과적이었는지 둘 뿌리는 피드백 만족도 실험결과, 대부분의 사람들이 피드백이 적절하게 이루어졌다고 보고하였다. 이러한 결과는 양미감소 피드백이 실제로 밑미를 줄이는 데 적절하게 제시되었다는 것을 밝혀준다.

단순히 피드백을 받았다는 것 때문에 나타난 변화인지를 확인하기 위하여 무작위 피드백을 제시하는 집단도 도입하였다. 무작위 피드백은 생리검사 입력을 받는 실험에서 밑미를 연산하였는데 피드백은 주는 것이 아니라 난수로 무작위 추출된 시간에 밑미감소 피드백을 제시하는 것이다. 무작위 피드백 제시조
건과 피드백 비제시조건에서는 면적이 보고 수, 설문검사 성적, 과제수행 충동률, 심리적 변화에서 유의미한 차이를 나타내지 않았다. 이러한 결과는 단순히 피드백을 받았다는 것보다는 면역을 경험할 때 면역감소 피드백이 실제로 제시되어야 심리적, 생리적 행동의 변화를 일으킬 수 있다는 것을 보여 준다.

위의 연구는 가상현실 시스템을 평가하는 데 심리 생리학적 지표들을 어떻게 해석하고 응용할 것인가의 해답을 모색하는 데라고 할 수 있다. 생리검사 분석만을 통해 가상현실에서의 인간의 감성을 완전히 평가할 수 없으며, 주관적인 설문과 또한 매우 가치 있는 정보를 제공한다. 그림기 때문에 가상환경의 특성을 고려하여 개발된 생리검사 측정 및 분석과 설문지통한 심리적 평가는 행동적 평가와 더불어 이미 시작된 사이비 심리학의 한 측이 될 것이다.

결론적으로, 앞으로의 연구에서는 편안함을 중시시키면서도 현실감을 손상시키지 않는 가상현실 시스템을 구축하는 방법에 대한 탐색이 필요한 것으로 생각된다.

참고문헌