Virtual Angioscopy for Diagnosis of Carotid Artery Stenosis

경동맥 협착증 진단을 위한 가상혈관경

  • 김도연 (한국전력기술(주) 원자로설계개발단) ;
  • 박종원 (충남대학교 정보통신공학과)
  • Published : 2003.10.01

Abstract

The virtual angioscopy was implemented using MR angiography image of carotid artery Inside of the carotid artery is one of the body region not accessible by real optical endoscopy but can be visualized with virtual endoscopy. In order to determine the navigation path, we segmented the common carotid artery and internal carotid artery from the MR angiography image. We used the coordinates as a navigation path for virtual camera that were calculated from medial axis transformation. We used the perspective projection and marching cube algorithm to render the surface from volumetric MRA image data. A stroke occurs when brain cells die because of decreased blood flow to the brain. The carotid artery is the primary blood vessel that supplies the blood flow to the brain. Therefore, the carotid artery stenosis is the primary reason of stroke. The virtual angioscopy is highly recommended as a diagnosis tool with which the specific Place of stenosis can be identified and the degree of stenosis can be measured qualitatively. Also, the virtual angioscopy can be used as an education and training tool for endoscopist and radiologist.

본 논문은 경동맥(carotid artery)을 환영한 MRA(Magnetic Resonance Angiography) 영상을 이용하여 실제 내시경으로 접근이 불가능한 경동맥의 내부를 시각화(visualization)하기 위해 가상혈관경(virtual angioscopy)을 구현하였다 항해경로 결정을 위해 MRA의 단면 원천영상에서 총경동맥 (common carotid artery) 및 내경동맥(internal carotid artery)만을 분리하였고, 중앙축 변환(MAT Medial Axis Transformation)을 통해 구해진 좌표값을 가상 카메라의 운행 경로로 사용하였다. 원근투영 (perspective projection) 및 볼륨 데이타의 표면을 렌더링하기 위해 마칭큐브(marching rube) 알고리즘을 사용하였다 허혈성으로 인한 뇌혈관질환(cerebrovascular disease)은 뇌졸중(stroke)의 80% 정도를 차지하는데, 경동맥은 뇌에 혈액을 공급하는 주된 혈관으로 경동맥 협착증(carotid artery stenosis)은 뇌졸중의 직접적인 원인이 된다. 가상혈관경은 경동맥 내부의 협착 위치와 협착 정도를 정성적으로 파악 할 수 있으며 협착증의 진단과 교육에 사용될 수 있다.

Keywords

References

  1. R.A. Robb, 'Virtual (Computed) Endoscopy : Development and Evaluation Using the Visible Human Datasets,' Visible Human Project Conference, 1996
  2. F.A. Jolesz, W.E. Lorensen, H. Shinmoto, et al, 'Interactive Virtual Endoscopy,' American Journal of Roentgenology (AJR), Volume 169, pp. 1229-1235, 1997 https://doi.org/10.2214/ajr.169.5.9353433
  3. F. Rodrignez, 'Screening for Carotid Artery Stenosis and Performance of Carotid Endarterectomy in Select Asymptomatic Patients of Cost- effective,' McGill Journal of Medicine, pp. 35-41, 1999
  4. NEMA Draft Standards, Digital Imaging and Communications in Medicine(DICOM), Part 1-14
  5. M.J. Calott, 'Histogram Analysis Using a Scale Space Approach,' IEEE Transaction on PAMI, pp. 121-129, 1987
  6. R. Jain, R. Kasturi, B.G. Schunck, Machine Vision, pp. 55-57, MaGraw-Hill, Inc. 1995
  7. J.R. Parker, Algorithms for Image Processing and Computer Vision, pp. 177-179, John-Wiley & Sons, Inc, 1997
  8. R.C. Gonzalez, R.E. Woods, Digital Image Processing, pp. 491-494, Addison-Wesley, 1992
  9. K. Kreeger, I. Bitter, F. Dachille, et al, 'Adaptive Perspective Ray Casting,' Proceeding fo IEEE Volume Visualizaion, pp. 55-62, 1998 https://doi.org/10.1109/SVV.1998.729585
  10. P. Lacroute, M. Levoy, 'Fast Volum Rendering using a shear-Warp Factorization of the Viewing Transformation,' Proceeding of ACM SIGGRAPH, pp. 451-458, 1994 https://doi.org/10.1145/192161.192283
  11. W. Lorensen, H. Cline, 'Marching Cubes : A High Resolution 3D Surface Construction Algorithm,' Proceeding of ACM SIGGRAPH, pp. 163-169, 1987 https://doi.org/10.1145/37401.37422
  12. L. Hong, S. Muraki, A. Kaufman, D. Bartz, T. He, 'Virtual Voyage : Interactive Navigation in the Humm Colon,' Proceeding of ACM SIGGRAPH, pp. 27-34, 1997
  13. L. Hong, A. Kaufman, Y. Wei, et al, '3D Virtual Colonoscoy,' Proceeding of Biomedical Visualization, pp. 26-33, 1995 https://doi.org/10.1109/BIOVIS.1995.528702
  14. R.D. Swift, A.P. Kiraly, A.J. Sherbondy, et al, 'Automatic Axes-Generation for Virtual Bronchoscopic Assesment of Major Airway Obstructions,' Computerized Medical Imaging and Graphics, Volume 26, Number 2, pp. 103-118, 2002 https://doi.org/10.1016/S0895-6111(01)00035-0
  15. J.P. Helferty, A.J. Sherbondy, A.P. Kiraly, et al. 'Image-Guided Endoscopy for Lung-Cancer Assessment,' Proceeding of IEEE Image Porcessing, pp. 307-310, 2001 https://doi.org/10.1109/ICIP.2001.958489
  16. E. Gobbetti, P. Pili, A. Zorcolo, M. Tuveri, 'Interactive Virtual Angioscopy,' Proceeding of IEEE Visualization, pp. 435-438, 1998 https://doi.org/10.1109/VISUAL.1998.745337
  17. D. Kochanek, R. Bartels, 'Interpolating Splines with Local Tension. Continuity, and Bias Control,' Computer Graphics, Volume 18, Number 3, pp. 33-41, 1984 https://doi.org/10.1145/964965.808575
  18. G. Rubin, C. Beaulieu, V. Argiro, et al, 'Perpective Volume Rendering of CT and MR Images : Applications for Endoscopic Imaging,' Radiology, Volume 199, pp. 321-330, 1996 https://doi.org/10.1148/radiology.199.2.8668772