• Title/Summary/Keyword: vibrating .sample

Search Result 205, Processing Time 0.028 seconds

Electromagnetic Interference Reflectivity of Nanostructured Manganese Ferrite Reinforced Polypyrrole Composites

  • Chakraborty, Himel;Chabri, Sumit;Bhowmik, Nandagopal
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.295-298
    • /
    • 2013
  • Nano-size manganese ferrite reinforced conductive polypyrrole composites reveal a core-shell structure by in situ polymerization, in the presence of dodecyl benzene sulfonic acid as the surfactant and dopant, and iron chloride as the oxidant. The structure and magnetic properties of manganese ferrite nano-fillers were measured, by using X-ray diffraction and vibrating sample magnetometer. The morphology, microstructure, and conductivity of the composite were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, and four-wire technique. The microwave-absorbing properties of composites reinforcement dispersed in resin coating with the coating thickness of 1.2 nm were investigated, by using vector network analyzers, in the frequency range of 8~12 GHz. A reflection loss of -8 dB was observed at 10.5 GHz.

Characterization of Fe-Co Nanocomposite Powders Produced by Chemical Vapor Condensation Methods (화학기상응축법으로 제조한 Fe-Co 나노복합 분말의 미세구조와 자기적 특성)

  • ;Z. H. Wang;;;Z. D. Zhang
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.322-328
    • /
    • 2002
  • Fe-Co nanocomposite powders with different composition were prepared by chemical vapor condensation (CVC) process and their characterizations were studied by means of X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The particles having the mean size of 5~25 nm consisted of metallic cores and oxide shells. The Co contents and particle size increased with increasing the carrier gas flow rate of Co precursor. The saturation magnetization and coercivity increased with increasing Co content. and the saturation magnetization maximized at the 40 wt.%Co. The Fe-Co nanocomposite powder oxidized at $400^{\circ}C$ showed the maximum coercivity of 1739 Oe.

The Effect of Gas Pressure on the c-axis Orientation Properties of Co-Cr Thin Film prepared by Sputtering Method (스퍼터링법으로 제작된 Co-Cr 박막에서 가스 압력이 c-축 배향성에 미치는 영향)

  • Choi, Sung-Min;Son, In-Hwan;Kim, Jae-Hwan;Kim, Kyung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.761-763
    • /
    • 1998
  • In this paper, Co-Cr thin films which are known for a excellent perpendicular magnetic recording media were prepared. Changing target- substrate distance, Ar gas pressure and arriving atoms, the incident angle and c-axis orientation properties by using the facing targets sputtering system. We evaluated the c-axis dispersion angle by measu ring half-height width with Micro area X-Ray Diffractometer, measured the thickness of thin film with Ellipsometer. The magnetic properties were compared measuring in-plane squareness and perpendicular coercivity with vibrating sample Magnetometer.

  • PDF

펄스레이져 증착법을 이용한 자기커패시터용 Pt/CoNiFe/$BaTiO_3$/CoNiFe 박막 제조 및 전.자기 특성 연구

  • Na, Yeo-Jin;Yun, Seong-Uk;Kim, Cheol-Seong;Sim, In-Bo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.240.1-240.1
    • /
    • 2011
  • 본 연구에서는 펄스레이져 박막 증착법(Pulsed Laser Deposition;PLD)을 이용하여 연자성의 CoNiFe (CNF) 물질과 강유전 특성의$BaTiO_3$ (BTO) 물질을 다층박막 구조로 제작하여 약자장(H=200 Oe)에 의해 에너지를 집적 시키거나 유전상수를 조절하여 박막의 구조 변화에 따른 커패시턴스 변화를 연구하였다. 다양한 구조의 다층 박막은 Si/$SiO_2$/Ti/Pt(111) 기판상에 PLD을 이용하여 증착하였으며, Phillp's X-선 회절기 (XRD)를 이용하여 결정구조와 격자 상수를 결정하였다. FE-SEM, TEM, AFM 및 EDS를 이용하여 박막 표면/단면의 미세구조 및 물질에 따른 조성비를 확인하였다. 자기적 특성을 위해Vibrating Sample Magnetometer (VSM)를 측정하였고, 전기적 특성은 LCR meter를 이용하여 측정하였다.

  • PDF

Corrosion Monitoring of PEO-Pretreated Magnesium Alloys

  • Gnedenkov, A.S.;Sinebryukhov, S.L.;Mashtalyar, D.V.;Gnedenkov, S.V.;Sergienko, V.I.
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.151-159
    • /
    • 2017
  • The MA8 alloy (formula Mg-Mn-Се) has been shown to have greater corrosion stability than the VMD10 magnesium alloy (formula Mg-Zn-Zr-Y) in chloride-containing solutions by Scanning Vibrating Electrode Technique (SVET) and by optical microscopy, gravimetry, and volumetry. It has been established that the crucial factor for the corrosion activity of these samples is the occurrence of microgalvanic coupling at the sample surface. The peculiarities of the kinetics and mechanism of the corrosion in the local heterogeneous regions of the magnesium alloy surface were investigated by localized electrochemical techniques. The stages of the corrosion process in artificial defects in the coating obtained by plasma electrolytic oxidation (PEO) at the surface of the MA8 magnesium alloy were also studied. The analysis of the experimental data enabled us to determine that the corrosion process in the defect zone develops predominantly at the magnesium/coating interface. Based on the measurements of the corrosion rate of the samples with PEO and composite polymer-containing coatings, the best anticorrosion properties were displayed by the composite polymer-containing coatings.

Irradiation-induced BCC-phase formation and magnetism in a 316 austenitic stainless steel

  • Xu, Chaoliang;Liu, Xiangbing;Xue, Fei;Li, Yuanfei;Qian, Wangjie;Jia, Wenqing
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.610-613
    • /
    • 2020
  • Specimens of austenitic stainless steel were irradiated with 6 MeV Xe ions to two doses of 7 and 15 dpa at room temperature and 300 ℃ respectively. Then partial irradiated specimens were subsequently thermally annealed at 550 ℃. Irradiation-induced BCC-phase formation and magnetism were analyzed by grazing incidence X-ray diffraction (GIXRD) and vibrating sample magnetometer (VSM). It has been shown that irradiation damage level, irradiation temperature and annealing temperature have significant effect on BCC-phase formation. This BCC-phase changes the magnetic behavior of austenitic stainless steel. The stress relief and compositional changes in matrix are the driving forces for BCC-phase formation in austenitic stainless steel during ion irradiation.

Dependence of Structural and Magnetic Properties on Annealing Times in Co-precipitated Cobalt Ferrite Nanoparticles

  • Purnama, Budi;Rahmawati, Rafika;Wijayanta, Agung Tri;Suharyana, Suharyana
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.207-210
    • /
    • 2015
  • Modifications in the structural and magnetic properties of co-precipitated cobalt ferrite nanoparticles can be accomplished by varying the annealing time periods during the synthetic process. Experimental results show that high-purity cobalt ferrite nanoparticles are obtained using a co-precipitation process. The dependence of the crystallite sizes on the annealing time was successfully demonstrated using XRD and SEM. Finally, vibrating sample magnetometer analyses show that the magnetic properties of the cobalt ferrite nanoparticles depend on their relative particle sizes.

Synthesis of Nickel Nanoparticles using Electron Beam Irradiation

  • Lee, Seung Jun;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.241-245
    • /
    • 2015
  • A study on the preparation of nickel oxide nanoparticles using electron beam irradiation is described. Nickel nanoparticles were synthesized with nickel chloride hexahydrate as a metal precursor and different sodium hydroxide concentrations using electron beam irradiation. The effects of sodium hydroxide concentration and electron beam absorbed doses were investigated. The samples were synthesized at different sodium hydroxide concentrations and with absorbed doses of 100 to 500 kGy at room temperature. Synthesized nanoparticles were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer (VSM). The nanoparticle morphologies seemed to be non-spherical and aggregated. The 1:1 molar ratio of nickel chloride hexahydrate and sodium hydroxide showed a higher purity and saturation magnetization value of 13.0 emu/g. The electron beam absorbed dose was increased with increasing nickel nanoparticle nucleation.

The Properties of Magnetic Ferrofluid for the removal of oil from water surface (수면 유포 유류의 제거에 미치는 자성유체의 특성)

  • 신학기;신세건
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.41-45
    • /
    • 2003
  • Magnetite powder for kerosene-based ferrofluid was synthesized by air oxidation of waste acid containing $Fe^{2+}$ and $Fe^{3+}$ ions in the pH=11 at $60^{\circ}C$. Stable kerosen-based ferrofluid was prepared by addition of polyoxyethylene nonylphenyl ether(POENPE) to the magnetite containing water. Dispersion mechanism of an addition POENPE to the magnetite was examined by means of the fraction of solid dispersed FT-IR spectrum. And magnetic properties of kerosen-based ferrofluid were examined by method of Vibrating Sample Magnetometer. In order to remove oil on the water surface by an addition of kerosen-based ferrofluid, the optimum conditions were examined.

Effects of Cr Underlayer on Microstructural and Magnetic Properties of Sputtered CoNiCr/Cr, CoCrTa/Cr Films (Cr underlayer가 Sputter 증착한 CoNiCr/Cr, CoCrTa/Cr longitudinal 자기기록매채의 미세구조와 자성특성에 미치는 영향)

  • Park, S.C.;Ahn, B.T.;Im, H.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.7-10
    • /
    • 1992
  • CoNiCr/Cr and CoCrTa/Cr for longitudinal magnetic recording media were. prepared on Coming 7059 glass by RF magnetron sputtering. The thickness of Cr underlayer was varied from 500 to $3000{\AA}$ and. that of magnetic layer was $700{\AA}$. Coercivity and squareness were measured using V.S.M.(vibrating sample magnetometer). The coercivity of films increased with increasing Cr thickness when the films were unannealed. The coercivity of the films annealed in a 10 mtorr vacuum increased initially with annealing time and then saturated with further increase in annealing time. The coercivity value difference between the unannealed and annealed films increased with increasing the thickness of Cr underlayer No significant change was found in squareness after anneal, regardless of Cr underlayer thickness.

  • PDF