Browse > Article
http://dx.doi.org/10.14773/cst.2017.16.3.151

Corrosion Monitoring of PEO-Pretreated Magnesium Alloys  

Gnedenkov, A.S. (Institute of Chemistry)
Sinebryukhov, S.L. (Institute of Chemistry)
Mashtalyar, D.V. (Institute of Chemistry)
Gnedenkov, S.V. (Institute of Chemistry)
Sergienko, V.I. (Institute of Chemistry)
Publication Information
Corrosion Science and Technology / v.16, no.3, 2017 , pp. 151-159 More about this Journal
Abstract
The MA8 alloy (formula Mg-Mn-Се) has been shown to have greater corrosion stability than the VMD10 magnesium alloy (formula Mg-Zn-Zr-Y) in chloride-containing solutions by Scanning Vibrating Electrode Technique (SVET) and by optical microscopy, gravimetry, and volumetry. It has been established that the crucial factor for the corrosion activity of these samples is the occurrence of microgalvanic coupling at the sample surface. The peculiarities of the kinetics and mechanism of the corrosion in the local heterogeneous regions of the magnesium alloy surface were investigated by localized electrochemical techniques. The stages of the corrosion process in artificial defects in the coating obtained by plasma electrolytic oxidation (PEO) at the surface of the MA8 magnesium alloy were also studied. The analysis of the experimental data enabled us to determine that the corrosion process in the defect zone develops predominantly at the magnesium/coating interface. Based on the measurements of the corrosion rate of the samples with PEO and composite polymer-containing coatings, the best anticorrosion properties were displayed by the composite polymer-containing coatings.
Keywords
SVET; PEO; magnesium alloys; composite protective coating; SIET;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya, S. L. Sinebryukhov, V. S. Egorkin, M. V. Nistratova, A. Yerokhin and A. Matthews, Surf. Coat. Technol., 204, 2316 (2010).   DOI
2 S. L. Sinebryukhov, A. S. Gnedenkov, D. V. Mashtalyar, S. V. Gnedenkov, Surf. Coat. Technol., 205, 1697 (2010).   DOI
3 G. Song, A. AtrensAdv. Eng. Mater., 5, 837 (2003).   DOI
4 G. Williams, R. Grace, Electrochim. Acta, 56, 1894 (2011).   DOI
5 A. L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Leyland, A Matthews, Surf. Coat. Technol., 182, 78 (2004).   DOI
6 R. Arrabal, J. M. Mota, A. Criado, A. Prado, M. Mohedano, E. Matykina, Surf. Coat. Technol., 206, 4692(22) (2012).   DOI
7 S. V. Gnedenkov, S. L. Sinebryukhov, Compos. Interface., 16, 387 (2009).   DOI
8 S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, V. S. Egorkin, A. K. Tsvetnikov, A. N. Minaev, Protect. Met., 43, 667 (2007).   DOI
9 A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, S. V. Gnedenkov, Surf. Coat. Technol., 225, 112 (2013).   DOI
10 A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, S. V. Gnedenkov, Phys. Procedia, 23, 98 (2012).   DOI
11 A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, S. V. Gnedenkov, Sol. St. Phen., 213, 143 (2014).   DOI
12 S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, V. S. Egorkin, M. V. Sidorova, A. S. Gnedenkov, Corros. Sci., 85, 52 (2014).   DOI