Browse > Article
http://dx.doi.org/10.4283/JMAG.2015.20.3.241

Synthesis of Nickel Nanoparticles using Electron Beam Irradiation  

Lee, Seung Jun (Research Division for Industrial and Environment, Korea Atomic Energy Research Institute)
Kim, Hyun Bin (Research Division for Industrial and Environment, Korea Atomic Energy Research Institute)
Oh, Seung Hwan (Research Division for Industrial and Environment, Korea Atomic Energy Research Institute)
Kang, Phil Hyun (Research Division for Industrial and Environment, Korea Atomic Energy Research Institute)
Publication Information
Abstract
A study on the preparation of nickel oxide nanoparticles using electron beam irradiation is described. Nickel nanoparticles were synthesized with nickel chloride hexahydrate as a metal precursor and different sodium hydroxide concentrations using electron beam irradiation. The effects of sodium hydroxide concentration and electron beam absorbed doses were investigated. The samples were synthesized at different sodium hydroxide concentrations and with absorbed doses of 100 to 500 kGy at room temperature. Synthesized nanoparticles were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer (VSM). The nanoparticle morphologies seemed to be non-spherical and aggregated. The 1:1 molar ratio of nickel chloride hexahydrate and sodium hydroxide showed a higher purity and saturation magnetization value of 13.0 emu/g. The electron beam absorbed dose was increased with increasing nickel nanoparticle nucleation.
Keywords
nickel nanoparticles; magnetic materials; electron beam;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Wang, X. Kou, L. Zhang, and J. Li, Mat. Res. Bull. 43, 3529 (2008).   DOI   ScienceOn
2 J. Gong, L. L. Wang, Y. Liu, J. H. Yang, and Z. G. Zong, J. Alloys Compd. 457, 6 (2008).   DOI   ScienceOn
3 A. Kumar, A. Saxena, A. De, R. Shnker, and S. Mozumdar, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 025009 (9pp) (2013).
4 Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu, and Y. Qian, Adv. Mater. 15, 1946 (2003).   DOI   ScienceOn
5 Y. Hou and S. Gao, J. Mater. Chem. 13, 1510 (2003).   DOI   ScienceOn
6 M. Green and P. O'Brien, Chem. Commun. 1912 (2001).
7 Y. Jeon, G. H. Lee, J. Park, B. Kim, and Y. Chang, J. Phys. Chem. B. 109, 12257 (2005).   DOI   ScienceOn
8 J. Park, E. Kang, S. U. Son, H. M. Park, M. K. Lee, J. Kim, K. W. Kim, H. J. Noh, J. H. Park, C. J. Bae, J. G. Park, and T. Hyeon, Adv. Mater. 17, 429 (2005).   DOI   ScienceOn
9 K. A. Bogle, S. D. Dhole, and V. N. Bhoraskar, Nanotechnology 17, 3204 (2006).   DOI   ScienceOn
10 L. Q. Pharm, J. H. Sohn, J. H. Park, H. S. Kang, B. C. Lee, and Y. S. Kang, Radiat. Phys. Chem. 80, 638 (2011).   DOI   ScienceOn
11 K. D. N. Vo, C. Kowandy, L. Dupont, X. Coqueret, and N. Q. Hien, Radiat. Phys. Chem. 94, 84 (2014).   DOI   ScienceOn
12 S. P. Ramnani, J. Biswal, and S. Sabharwal, Radiat. Phys. Chem. 76, 1290 (2007).   DOI   ScienceOn
13 A. Abedini, A. R. Daud, M. A. A. Hamid, N. K. Othman, and E. Saion, Nanoscale Res. Lett. 8, 474 (2013).   DOI   ScienceOn
14 H. T. Zhang, G. Wu, X. H. Chen, and X. G. Qiu, Mater. Res. Bull. 41, 495 (2006).   DOI   ScienceOn