Browse > Article
http://dx.doi.org/10.1016/j.net.2019.09.001

Irradiation-induced BCC-phase formation and magnetism in a 316 austenitic stainless steel  

Xu, Chaoliang (Suzhou Nuclear Power Research Institute)
Liu, Xiangbing (Suzhou Nuclear Power Research Institute)
Xue, Fei (Suzhou Nuclear Power Research Institute)
Li, Yuanfei (Suzhou Nuclear Power Research Institute)
Qian, Wangjie (Suzhou Nuclear Power Research Institute)
Jia, Wenqing (Suzhou Nuclear Power Research Institute)
Publication Information
Nuclear Engineering and Technology / v.52, no.3, 2020 , pp. 610-613 More about this Journal
Abstract
Specimens of austenitic stainless steel were irradiated with 6 MeV Xe ions to two doses of 7 and 15 dpa at room temperature and 300 ℃ respectively. Then partial irradiated specimens were subsequently thermally annealed at 550 ℃. Irradiation-induced BCC-phase formation and magnetism were analyzed by grazing incidence X-ray diffraction (GIXRD) and vibrating sample magnetometer (VSM). It has been shown that irradiation damage level, irradiation temperature and annealing temperature have significant effect on BCC-phase formation. This BCC-phase changes the magnetic behavior of austenitic stainless steel. The stress relief and compositional changes in matrix are the driving forces for BCC-phase formation in austenitic stainless steel during ion irradiation.
Keywords
Irradiation; Austenitic stainless steel; BCC-Phase formation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Chai, W. Lai, Z. Li, W. Feng, Acta Metall. Sin.(Engl. Lett.). 25 (2012) 29-39.
2 S. Fayeulle, D. Treheux, Appl. Surf. Sci. 25 (1986) 288-304.   DOI
3 E.P. Butler, M.G. Burke, Acta Metall. 34 (3) (1986) 557-570.   DOI
4 Alexandre La Fontaine, Hung-Wei Yen, Patrick Trimby, et al., Corros. Sci. 85 (2014) 1-6.   DOI
5 Y. Kamada, T. Mikami, S. Takahashi, et al., J. Magn. Magn. Mater. 310 (2007) 2856-2858.   DOI
6 E. Johnson, A. Johansen, L. Sarholt-kristensen, et al., Nucl. Instrum. Methods Phys. Res. B 19/20 (1987) 171-176.   DOI
7 S. Nasu, F.E. Fujita, Hyperfine Interact. 29 (1986) 1279-1282.   DOI
8 Rong-shan Wanga, Chao-liang Xu, Xiang-bing Liu, et al., J. Nucl. Mater. 457 (2015) 130-134.   DOI
9 N. Hayashi, T. Takahashi, Appl. Phys. Lett. 41 (1982) 1100-1101.   DOI
10 Lefu Zhanga, Yasuhiro Kamadaa, Hiroaki Kikuchi, et al., J. Magn. Magn. Mater. 271 (2004) 402-408.   DOI
11 Hyung-Ha Jin, Eunsol Ko, Sangyeob Lim, et al., J. Nucl. Mater. 493 (2017) 239-245.   DOI
12 Lefu Zhang, Seiki Takahashi, Yasuhiro Kam102ada, et al., J. Mater. Sci. 40 (2005) 2709-2711.   DOI
13 J. Morisawa, M. Otaka, M. Kodama, et al., J. Nucl. Mater. 302 (2002) 66-71.   DOI
14 J.P. Biersack, L.G. Haggmark, Nucl. Instrum. Methods 174 (1980) 257-269.   DOI
15 Shigeru Takaya, Yuji Nagae, Tsunemitsu Yoshitake, et al., E-J. Adv. Mainten. 1 (2009) 44-51.
16 B.Z. Margolin, I.P. Kursevich, A.A. Sorokin, et al., Strength Mater. 42 (2010) 144-153.   DOI
17 Hiroshi Kinoshita, Heishichiro Takahashi, Dwi Gustiono, et al., Mater. Trans. 48 (2007) 924-930.   DOI
18 ASTM 521-96, Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation, 2003.
19 I. Sakamoto, N. Hayashi, B. Furubayashi, H. Tanoue, J. Appl. Phys. 68 (9) (1990) 4508-4512.   DOI
20 I. Sakamoto, N. Hayashi, H. Tanoue, Surf. Coat. Technol. 65 (1994) 133-136.   DOI
21 M.N. Gussev, J.T. Busby, L. Tan, F.A. Garner, J. Nucl. Mater. 448 (2014) 294-300.   DOI
22 Shigeru Takaya, Ichiro Yamagata, Shoichi Ichikawa, et al., Int. J. Appl. Electromagn. Mech. 33 (2010) 1335-1342.   DOI
23 Lefu Zhang, Seiki Takahashib, Yasuhiro Kamada, Scr. Mater. 57 (2007) 711-714.   DOI
24 E. Menendez, J. Sort, M.O. Liedke, et al., J. Mater. Res. 24 (2009) 565-573.   DOI
25 W. Van Renterghem, A. Al Mazouzi, S. Van Dyck, J. Nucl. Mater. 413 (2011) 95-102.   DOI
26 Fengmin Chu, Minghui Song, Kazutaka Mitsuishi, et al., Jpn. Soc. Electron Microsc. 51 (2002) 231-234.   DOI
27 Chaoliang Xu, Xiangbing Liu, Fei Xue, et al., Fusion Eng. Des. 133 (2018) 125-129.   DOI