DOI QR코드

DOI QR Code

Corrosion Monitoring of PEO-Pretreated Magnesium Alloys

  • Gnedenkov, A.S. (Institute of Chemistry) ;
  • Sinebryukhov, S.L. (Institute of Chemistry) ;
  • Mashtalyar, D.V. (Institute of Chemistry) ;
  • Gnedenkov, S.V. (Institute of Chemistry) ;
  • Sergienko, V.I. (Institute of Chemistry)
  • Received : 2017.02.09
  • Accepted : 2017.06.07
  • Published : 2017.06.30

Abstract

The MA8 alloy (formula Mg-Mn-Се) has been shown to have greater corrosion stability than the VMD10 magnesium alloy (formula Mg-Zn-Zr-Y) in chloride-containing solutions by Scanning Vibrating Electrode Technique (SVET) and by optical microscopy, gravimetry, and volumetry. It has been established that the crucial factor for the corrosion activity of these samples is the occurrence of microgalvanic coupling at the sample surface. The peculiarities of the kinetics and mechanism of the corrosion in the local heterogeneous regions of the magnesium alloy surface were investigated by localized electrochemical techniques. The stages of the corrosion process in artificial defects in the coating obtained by plasma electrolytic oxidation (PEO) at the surface of the MA8 magnesium alloy were also studied. The analysis of the experimental data enabled us to determine that the corrosion process in the defect zone develops predominantly at the magnesium/coating interface. Based on the measurements of the corrosion rate of the samples with PEO and composite polymer-containing coatings, the best anticorrosion properties were displayed by the composite polymer-containing coatings.

Keywords

References

  1. S. V. Gnedenkov, O. A. Khrisanfova, A. G. Zavidnaya, S. L. Sinebryukhov, V. S. Egorkin, M. V. Nistratova, A. Yerokhin and A. Matthews, Surf. Coat. Technol., 204, 2316 (2010). https://doi.org/10.1016/j.surfcoat.2009.12.024
  2. S. L. Sinebryukhov, A. S. Gnedenkov, D. V. Mashtalyar, S. V. Gnedenkov, Surf. Coat. Technol., 205, 1697 (2010). https://doi.org/10.1016/j.surfcoat.2010.05.048
  3. G. Song, A. AtrensAdv. Eng. Mater., 5, 837 (2003). https://doi.org/10.1002/adem.200310405
  4. G. Williams, R. Grace, Electrochim. Acta, 56, 1894 (2011). https://doi.org/10.1016/j.electacta.2010.09.005
  5. A. L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Leyland, A Matthews, Surf. Coat. Technol., 182, 78 (2004). https://doi.org/10.1016/S0257-8972(03)00877-6
  6. R. Arrabal, J. M. Mota, A. Criado, A. Prado, M. Mohedano, E. Matykina, Surf. Coat. Technol., 206, 4692(22) (2012). https://doi.org/10.1016/j.surfcoat.2012.05.091
  7. S. V. Gnedenkov, S. L. Sinebryukhov, Compos. Interface., 16, 387 (2009). https://doi.org/10.1163/156855409X447165
  8. S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, V. S. Egorkin, A. K. Tsvetnikov, A. N. Minaev, Protect. Met., 43, 667 (2007). https://doi.org/10.1134/S0033173207070090
  9. A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, S. V. Gnedenkov, Surf. Coat. Technol., 225, 112 (2013). https://doi.org/10.1016/j.surfcoat.2013.03.023
  10. A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, S. V. Gnedenkov, Phys. Procedia, 23, 98 (2012). https://doi.org/10.1016/j.phpro.2012.01.025
  11. A. S. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, S. V. Gnedenkov, Sol. St. Phen., 213, 143 (2014). https://doi.org/10.4028/www.scientific.net/SSP.213.143
  12. S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, V. S. Egorkin, M. V. Sidorova, A. S. Gnedenkov, Corros. Sci., 85, 52 (2014). https://doi.org/10.1016/j.corsci.2014.03.035