DOI QR코드

DOI QR Code

Synthesis of Nickel Nanoparticles using Electron Beam Irradiation

  • Lee, Seung Jun (Research Division for Industrial and Environment, Korea Atomic Energy Research Institute) ;
  • Kim, Hyun Bin (Research Division for Industrial and Environment, Korea Atomic Energy Research Institute) ;
  • Oh, Seung Hwan (Research Division for Industrial and Environment, Korea Atomic Energy Research Institute) ;
  • Kang, Phil Hyun (Research Division for Industrial and Environment, Korea Atomic Energy Research Institute)
  • Received : 2014.12.23
  • Accepted : 2015.09.02
  • Published : 2015.09.30

Abstract

A study on the preparation of nickel oxide nanoparticles using electron beam irradiation is described. Nickel nanoparticles were synthesized with nickel chloride hexahydrate as a metal precursor and different sodium hydroxide concentrations using electron beam irradiation. The effects of sodium hydroxide concentration and electron beam absorbed doses were investigated. The samples were synthesized at different sodium hydroxide concentrations and with absorbed doses of 100 to 500 kGy at room temperature. Synthesized nanoparticles were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) and a vibrating sample magnetometer (VSM). The nanoparticle morphologies seemed to be non-spherical and aggregated. The 1:1 molar ratio of nickel chloride hexahydrate and sodium hydroxide showed a higher purity and saturation magnetization value of 13.0 emu/g. The electron beam absorbed dose was increased with increasing nickel nanoparticle nucleation.

Keywords

References

  1. H. Wang, X. Kou, L. Zhang, and J. Li, Mat. Res. Bull. 43, 3529 (2008). https://doi.org/10.1016/j.materresbull.2008.01.012
  2. J. Gong, L. L. Wang, Y. Liu, J. H. Yang, and Z. G. Zong, J. Alloys Compd. 457, 6 (2008). https://doi.org/10.1016/j.jallcom.2007.02.124
  3. A. Kumar, A. Saxena, A. De, R. Shnker, and S. Mozumdar, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 025009 (9pp) (2013).
  4. Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu, and Y. Qian, Adv. Mater. 15, 1946 (2003). https://doi.org/10.1002/adma.200305663
  5. Y. Hou and S. Gao, J. Mater. Chem. 13, 1510 (2003). https://doi.org/10.1039/b303226d
  6. M. Green and P. O'Brien, Chem. Commun. 1912 (2001).
  7. Y. Jeon, G. H. Lee, J. Park, B. Kim, and Y. Chang, J. Phys. Chem. B. 109, 12257 (2005). https://doi.org/10.1021/jp050489o
  8. J. Park, E. Kang, S. U. Son, H. M. Park, M. K. Lee, J. Kim, K. W. Kim, H. J. Noh, J. H. Park, C. J. Bae, J. G. Park, and T. Hyeon, Adv. Mater. 17, 429 (2005). https://doi.org/10.1002/adma.200400611
  9. K. A. Bogle, S. D. Dhole, and V. N. Bhoraskar, Nanotechnology 17, 3204 (2006). https://doi.org/10.1088/0957-4484/17/13/021
  10. L. Q. Pharm, J. H. Sohn, J. H. Park, H. S. Kang, B. C. Lee, and Y. S. Kang, Radiat. Phys. Chem. 80, 638 (2011). https://doi.org/10.1016/j.radphyschem.2011.01.004
  11. K. D. N. Vo, C. Kowandy, L. Dupont, X. Coqueret, and N. Q. Hien, Radiat. Phys. Chem. 94, 84 (2014). https://doi.org/10.1016/j.radphyschem.2013.04.015
  12. S. P. Ramnani, J. Biswal, and S. Sabharwal, Radiat. Phys. Chem. 76, 1290 (2007). https://doi.org/10.1016/j.radphyschem.2007.02.074
  13. A. Abedini, A. R. Daud, M. A. A. Hamid, N. K. Othman, and E. Saion, Nanoscale Res. Lett. 8, 474 (2013). https://doi.org/10.1186/1556-276X-8-474
  14. H. T. Zhang, G. Wu, X. H. Chen, and X. G. Qiu, Mater. Res. Bull. 41, 495 (2006). https://doi.org/10.1016/j.materresbull.2005.09.019