• Title/Summary/Keyword: vertex coloring

Search Result 27, Processing Time 0.035 seconds

A Polynomial Time Algorithm for Vertex Coloring Problem (정점 색칠 문제의 다항시간 알고리즘)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.85-93
    • /
    • 2011
  • The Vertex Coloring Problem hasn't been solved in polynomial time, so this problem has been known as NP-complete. This paper suggests linear time algorithm for Vertex Coloring Problem (VCP). The proposed algorithm is based on assumption that we can't know a priori the minimum chromatic number ${\chi}(G)$=k for graph G=(V,E) This algorithm divides Vertices V of graph into two parts as independent sets $\overline{C}$ and cover set C, then assigns the color to $\overline{C}$. The element of independent sets $\overline{C}$ is a vertex ${\upsilon}$ that has minimum degree ${\delta}(G)$ and the elements of cover set C are the vertices ${\upsilon}$ that is adjacent to ${\upsilon}$. The reduced graph is divided into independent sets $\overline{C}$ and cover set C again until no edge is in a cover set C. As a result of experiments, this algorithm finds the ${\chi}(G)$=k perfectly for 26 Graphs that shows the number of selecting ${\upsilon}$ is less than the number of vertices n.

SOME PROPERTIES ON f-EDGE COVERED CRITICAL GRAPHS

  • Wang, Jihui;Hou, Jianfeng;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.357-366
    • /
    • 2007
  • Let G(V, E) be a simple graph, and let f be an integer function on V with $1{\leq}f(v){\leq}d(v)$ to each vertex $v{\in}V$. An f-edge cover-coloring of a graph G is a coloring of edge set E such that each color appears at each vertex $v{\in}V$ at least f(v) times. The f-edge cover chromatic index of G, denoted by ${\chi}'_{fc}(G)$, is the maximum number of colors such that an f-edge cover-coloring of G exists. Any simple graph G has an f-edge cover chromatic index equal to ${\delta}_f\;or\;{\delta}_f-1,\;where\;{\delta}_f{=}^{min}_{v{\in}V}\{\lfloor\frac{d(v)}{f(v)}\rfloor\}$. Let G be a connected and not complete graph with ${\chi}'_{fc}(G)={\delta}_f-1$, if for each $u,\;v{\in}V\;and\;e=uv{\nin}E$, we have ${\chi}'_{fc}(G+e)>{\chi}'_{fc}(G)$, then G is called an f-edge covered critical graph. In this paper, some properties on f-edge covered critical graph are discussed. It is proved that if G is an f-edge covered critical graph, then for each $u,\;v{\in}V\;and\;e=uv{\nin}E$ there exists $w{\in}\{u,v\}\;with\;d(w)\leq{\delta}_f(f(w)+1)-2$ such that w is adjacent to at least $d(w)-{\delta}_f+1$ vertices which are all ${\delta}_f-vertex$ in G.

THE CLASSIFICATION OF COMPLETE GRAPHS $K_n$ ON f-COLORING

  • ZHANG XIA;LIU GUIZHEN
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.127-133
    • /
    • 2005
  • An f-coloring of a graph G = (V, E) is a coloring of edge set E such that each color appears at each vertex v $\in$ V at most f(v) times. The minimum number of colors needed to f-color G is called the f-chromatic index $\chi'_f(G)$ of G. Any graph G has f-chromatic index equal to ${\Delta}_f(G)\;or\;{\Delta}_f(G)+1,\;where\;{\Delta}_f(G)\;=\;max\{{\lceil}\frac{d(v)}{f(v)}{\rceil}\}$. If $\chi'_f(G)$= ${\Delta}$f(G), then G is of $C_f$ 1 ; otherwise G is of $C_f$ 2. In this paper, the classification problem of complete graphs on f-coloring is solved completely.

EDGE COVERING COLORING OF NEARLY BIPARTITE GRAPHS

  • Wang Ji-Hui;Zhang Xia;Liu Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.435-440
    • /
    • 2006
  • Let G be a simple graph with vertex set V(G) and edge set E(G). A subset S of E(G) is called an edge cover of G if the subgraph induced by S is a spanning subgraph of G. The maximum number of edge covers which form a partition of E(G) is called edge covering chromatic number of G, denoted by X'c(G). It is known that for any graph G with minimum degree ${\delta},\;{\delta}-1{\le}X'c(G){\le}{\delta}$. If $X'c(G) ={\delta}$, then G is called a graph of CI class, otherwise G is called a graph of CII class. It is easy to prove that the problem of deciding whether a given graph is of CI class or CII class is NP-complete. In this paper, we consider the classification of nearly bipartite graph and give some sufficient conditions for a nearly bipartite graph to be of CI class.

Wavelength Assignment Optimization in Uni-Directional WDM Ring (단방향 WDM 링의 주파수 할당의 최적화)

  • Lee, Hee-Sang;Chung, Ji-Bok
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.556-563
    • /
    • 2000
  • In this paper, we consider wavelength assignment problem (WAP) in Wavelength division multiplexed (WDM) unidirectional optical telecommunication ring networks. We show that, even though WAP on unidirectional ring belongs to NP-hard, WAP can be exactly solvable in real-sized WDM rings for near future demand. To accomplish this, we convert WAP to the vertex coloring problem of the related graph and choose a special integer programming formulation for the vertex coloring problem. We use a column generation technique in a branch-and-price framework for the suggested formulation. We also propose some generic heuristics and do the performance comparison with the suggested optimization algorithm.

  • PDF

LIST INJECTIVE COLORING OF PLANAR GRAPHS WITH GIRTH AT LEAST FIVE

  • Hongyu Chen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.263-271
    • /
    • 2024
  • A vertex coloring of a graph G is called injective if any two vertices with a common neighbor receive distinct colors. A graph G is injectively k-choosable if any list L of admissible colors on V (G) of size k allows an injective coloring 𝜑 such that 𝜑(v) ∈ L(v) whenever v ∈ V (G). The least k for which G is injectively k-choosable is denoted by χli(G). For a planar graph G, Bu et al. proved that χli(G) ≤ ∆ + 6 if girth g ≥ 5 and maximum degree ∆(G) ≥ 8. In this paper, we improve this result by showing that χli(G) ≤ ∆ + 6 for g ≥ 5 and arbitrary ∆(G).

Optimization of Wavelength Assignment in All Optical WDM Ring (WDM Ring에서의 파장할당 방법에 대한 연구)

  • 정지복;이희상;정성진
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1999.04a
    • /
    • pp.381-383
    • /
    • 1999
  • WDM(Wavelength Division Multiplexing) Ring에서 경로과 고정된 파장할당문제는 Circular Arc Graph(CAG)에서의 vertex coloring문제와 동일하다. 본 연구에서는 극대독립집합(Maximal Independent Set)으로 vertex를 cover하는 정수계획법 모형을 제시하고 이를 효율적으로 풀 수 있는 column generation approach와 실험결과를 제시하겠다.

  • PDF

Frequency Assignment Method using NFD and Graph Coloring for Backbone Wireless Links of Tactical Communications Network (통합 필터 변별도와 그래프 컬러링을 이용한 전술통신망 백본 무선 링크의 주파수 지정 방법)

  • Ham, Jae-Hyun;Park, Hwi-Sung;Lee, Eun-Hyoung;Choi, Jeung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.441-450
    • /
    • 2015
  • The tactical communications network has to be deployed rapidly at military operation area and support the communications between the military command systems and the weapon systems. For that, the frequency assignment is required for backbone wireless links of tactical communications network without frequency interferences. In this paper, we propose a frequency assignment method using net filter discrimination (NFD) and graph coloring to avoid frequency interferences. The proposed method presents frequency assignment problem of tactical communications network as vertex graph coloring problem of a weighted graph. And it makes frequency assignment sequences and assigns center frequencies to communication links according to the priority of communication links and graph coloring. The evaluation shows that this method can assign center frequencies to backbone communication links without frequency interferences. It also shows that the method can improve the frequency utilization in comparison with HTZ-warfare that is currently used by Korean Army.

INJECTIVELY DELTA CHOOSABLE GRAPHS

  • Kim, Seog-Jin;Park, Won-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1303-1314
    • /
    • 2013
  • An injective coloring of a graph G is an assignment of colors to the vertices of G so that any two vertices with a common neighbor receive distinct colors. A graph G is said to be injectively $k$-choosable if any list $L(v)$ of size at least $k$ for every vertex $v$ allows an injective coloring ${\phi}(v)$ such that ${\phi}(v){\in}L(v)$ for every $v{\in}V(G)$. The least $k$ for which G is injectively $k$-choosable is the injective choosability number of G, denoted by ${\chi}^l_i(G)$. In this paper, we obtain new sufficient conditions to be ${\chi}^l_i(G)={\Delta}(G)$. Maximum average degree, mad(G), is defined by mad(G) = max{2e(H)/n(H) : H is a subgraph of G}. We prove that if mad(G) < $\frac{8k-3}{3k}$, then ${\chi}^l_i(G)={\Delta}(G)$ where $k={\Delta}(G)$ and ${\Delta}(G){\geq}6$. In addition, when ${\Delta}(G)=5$ we prove that ${\chi}^l_i(G)={\Delta}(G)$ if mad(G) < $\frac{17}{7}$, and when ${\Delta}(G)=4$ we prove that ${\chi}^l_i(G)={\Delta}(G)$ if mad(G) < $\frac{7}{3}$. These results generalize some of previous results in [1, 4].

Topological Properties of Recursive Circulants : Disjoint Cycles and Graph Invariants (재귀원형군의 위상 특성 : 서로소인 사이클과 그래프 invariant)

  • Park, Jeong-Heum;Jwa, Gyeong-Ryong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.999-1007
    • /
    • 1999
  • 이 논문은 재귀원형군 G(2^m , 2^k )를 그래프 이론적 관점에서 고찰하고 정점이 서로소인 사이클과 그래프 invariant에 관한 위상 특성을 제시한다. 재귀원형군은 1 에서 제안된 다중 컴퓨터의 연결망 구조이다. 재귀원형군 {{{{G(2^m , 2^k )가 길이 사이클을 가질 필요 충분 조건을 구하고, 이 조건하에서 G(2^m , 2^k )는 가능한 최대 개수의 정점이 서로소이고 길이가l`인 사이클을 가짐을 보인다. 그리고 정점 및 에지 채색, 최대 클릭, 독립 집합 및 정점 커버에 대한 그래프 invariant를 분석한다.Abstract In this paper, we investigate recursive circulant G(2^m , 2^k ) from the graph theory point of view and present topological properties of G(2^m , 2^k ) concerned with vertex-disjoint cycles and graph invariants. Recursive circulant is an interconnection structure for multicomputer networks proposed in 1 . A necessary and sufficient condition for recursive circulant {{{{G(2^m , 2^k ) to have a cycle of lengthl` is derived. Under the condition, we show that G(2^m , 2^k ) has the maximum possible number of vertex-disjoint cycles of length l`. We analyze graph invariants on vertex and edge coloring, maximum clique, independent set and vertex cover.