Bull. Korean Math. Soc. **61** (2024), No. 1, pp. 263–271 https://doi.org/10.4134/BKMS.b230097 pISSN: 1015-8634 / eISSN: 2234-3016

LIST INJECTIVE COLORING OF PLANAR GRAPHS WITH GIRTH AT LEAST FIVE

Hongyu Chen

ABSTRACT. A vertex coloring of a graph G is called injective if any two vertices with a common neighbor receive distinct colors. A graph G is injectively k-choosable if any list L of admissible colors on V(G) of size k allows an injective coloring φ such that $\varphi(v) \in L(v)$ whenever $v \in V(G)$. The least k for which G is injectively k-choosable is denoted by $\chi_i^l(G)$. For a planar graph G, Bu et al. proved that $\chi_i^l(G) \leq \Delta + 6$ if girth $g \geq 5$ and maximum degree $\Delta(G) \geq 8$. In this paper, we improve this result by showing that $\chi_i^l(G) \leq \Delta + 6$ for $g \geq 5$ and arbitrary $\Delta(G)$.

1. Introduction

All graphs considered in this paper are finite, simple and undirected. Let V(G), E(G), F(G), $\Delta(G)$, $\delta(G)$ and g(G) be the vertex set, edge set, face set, maximum degree, minimum degree and girth of G, respectively, and let $N_G(v) = \{u \mid uv \in E(G)\}.$

An injective k-coloring of a graph G is a mapping c: $V(G) \to \{1, 2, ..., k\}$ such that for any two vertices $u, v \in V(G), c(u) \neq c(v)$ if $N(u) \cap N(v) \neq \emptyset$. The injective chromatic number of G, denoted by $\chi_i(G)$, is the least integer k such that G has an injective k-coloring.

A list assignment of a graph G is a mapping L which assigns a color list L(v) to each vertex $v \in V(G)$. Given a list assignment L of G, an injective coloring φ of G is called an *injective L-coloring* if $\varphi(v) \in L(v)$ for each $v \in V(G)$. A graph G is injectively k-choosable if G has an injective L-coloring for any list assignment L with $|L(v)| \geq k$ for each $v \in V(G)$. The *injective choosability number* of G, denoted by $\chi_i^l(G)$, is the least integer k such that G is injectively k-choosable. Note that $\chi_i(G) \leq \chi_i^l(G)$ for every graph G. Borodin et al. [1] proved that for a planar graph, $\chi_i^l(G) = \chi_i(G) = \Delta$ if $\Delta \geq 16$ and g = 7, or $\Delta \geq 10$ and $8 \leq g \leq 9$, $\Delta \geq 6$ and $10 \leq g \leq 11$, or $\Delta = 5$ and $g \geq 12$.

A 2-distance k-coloring of a graph G is a mapping $c: V(G) \to \{1, 2, ..., k\}$ such that for any two vertices $u, v \in V(G), c(u) \neq c(v)$ if $1 \leq d(v_1, v_2) \leq 2$.

O2024Korean Mathematical Society

Received February 20, 2023; Revised June 8, 2023; Accepted November 28, 2023.

²⁰²⁰ Mathematics Subject Classification. 05C15.

 $Key\ words\ and\ phrases.$ Planar graph, list injective coloring, girth.

The 2-distance chromatic number of G, denoted by $\chi_2(G)$, is the least integer k such that G has a 2-distance k-coloring.

The concept of injective coloring was introduced by Hahn et al. [15] in 2002. They showed the injective chromatic number of complete graphs, paths, cycles, stars and proved that $\chi(G) \leq \chi_i(G) \leq \Delta^2(G) - \Delta(G) + 1$ if G is connected and $G \neq K_2$.

Obviously, an injective coloring is not necessarily proper, and this is the only difference between an injective coloring and a 2-distance coloring. But if every edge of a graph is incident with a triangle, they are the same. For the 2distance coloring of a planar graph, Wegner [19] posed the following conjecture in 1977.

Conjecture A. Let G be a planar graph with maximum degree Δ .

- (1) $\chi_2(G) \le 7$ if $\Delta = 3$;
- (2) $\chi_2(G) \leq \Delta + 5$ if $4 \leq \Delta \leq 7$; (3) $\chi_2(G) \leq \lfloor \frac{3\Delta}{2} \rfloor + 1$ if $\Delta \geq 8$.

On the trivial fact that $\chi_i(G) \leq \chi_2(G)$, in 2010, Lužar posed the following conjecture about planar graphs in [17]. The upper bounds are tight if Conjecture B is true.

Conjecture B. Let G be a planar graph with maximum degree Δ .

- (1) $\chi_i(G) \leq 5$ if $\Delta = 3$;
- (2) $\chi_i(G) \leq \Delta + 5$ if $4 \leq \Delta \leq 7$;
- (3) $\chi_i(G) \leq \left|\frac{3\Delta}{2}\right| + 1$ if $\Delta \geq 8$.

Clearly, $\Delta(G) \leq \chi_i(G) \leq |V(G)|$, so it seems natural to describe graphs of $\chi_i(G) = \Delta(G)$. For a planar graph, the following sufficient conditions (in terms of g and Δ) are known: $\Delta \geq 71$ and $g \geq 7$ [2], $\Delta \geq 4$ and $g \geq 13$ [9], and $\Delta \geq 3$ and $g \geq 19$ [18].

Many researches about the injective chromatic number have been studied under the limitation of maximum degree Δ and maximum average degree mad(G), where $\operatorname{mad}(G) = \operatorname{max}_{\emptyset \neq H \subseteq G} \{ \frac{2|E(H)|}{|V(H)|} \}$, there are the following results.

Theorem 1. Let G be a graph with maximum degree Δ .

(1) $\chi_i(G) \leq \Delta + 3 \text{ if } mad(G) < \frac{14}{5}; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) \leq \Delta + 4 \text{ if } mad(G) < 3; \chi_i(G) < 3;$ $\begin{array}{l} \Delta + 8 \ if \ mad(G) < \frac{10}{3} \ [14]. \\ (2) \ \chi_i^l(G) \le \Delta + 2 \ if \ mad(G) < \frac{14}{5} \ and \ \Delta \ge 4; \ \chi_i^l(G) \le 5 \ if \ mad(G) < \frac{36}{13} \end{array}$

and $\Delta = 3$ [10].

(3) $\chi_i^l(G) \leq \Delta + 2 \text{ if } mad(G) < 3 \text{ and } \Delta \geq 12; \ \chi_i^l(G) \leq \Delta + 4 \text{ if } mad(G) < \frac{10}{3}$ and $\Delta \geq 30; \ \chi_i^l(G) \leq \Delta + 5 \text{ if } mad(G) < \frac{10}{3} \text{ and } \Delta \geq 18; \ \chi_i^l(G) \leq \Delta + 6 \text{ if } mad(G) < \frac{10}{3} \text{ and } \Delta \geq 14 \text{ [16]}.$

(4) $\chi_i(G) \leq \Delta + 1 \text{ if } mad(G) \leq \frac{5}{2}; \ \chi_i(G) = \Delta \text{ if } mad(G) < \frac{42}{19} \ [9].$

For a planar graph G with girth at least g, $mad(G) < \frac{2g}{g-2}$. The issue of the injective chromatic number is discussed under the limitation of girth and maximum degree in [1, 4, 5, 7, 8, 11, 12], which can be described as follows.

Theorem 2. Let G be a planar graph with $g(G) \ge g'$ and $\Delta(G) \ge D$.

(1) If $(g', D) \in \{(9, 4), (7, 7), (6, 17)\}$, then $\chi_i(G) \leq \Delta + 1$.

(2) If $(g', D) \in \{(7, 1), (6, 9)\}$, then $\chi_i(G) \leq \Delta + 2$.

(3) If $(g', D) = \{(8,5)\}$, then $\chi_i^l(G) \leq \Delta + 1$. If $(g', D) = \{(6,8)\}$, then $\chi_i^l(G) \leq \Delta + 2$. If $(g', D) = \{(6,24)\}$, then $\chi_i^l(G) \leq \Delta + 1$. If g' = 6, then $\chi_i^l(G) \leq \Delta + 3$.

For a planar graph G with girth $g \ge 5$, Bu et al. [7] proved that if $\Delta \ge 8$, then $\chi_i^l(G) \le \Delta + 6$. In [5], they proved that if $\Delta \ge 13$, then $\chi_i^l(G) \le \Delta + 4$, and for any Δ , $\chi_i^l(G) \le \Delta + 7$, and in [3], they improved the result and showed that if $\Delta \ge 11$, then $\chi_i^l(G) \le \Delta + 4$. In [6], Bu et al. proved that if $\Delta \ge 10$, then $\chi_i^l(G) \le \Delta + 5$. So far, for a planar graph G with girth $g \ge 5$ and for any Δ , the best result of injective chromatic number is $\chi_i(G) \le \Delta + 6$ [13]. In this paper, we improve these results by proving the following theorem, which is closer to Conjecture B.

Theorem 3. If G is a planar graph with girth $g(G) \ge 5$, then $\chi_i^l(G) \le \Delta + 6$.

2. Structural properties of critical graphs

A graph G is called k-critical if G does not admit any injective L-coloring with $|L(v)| \ge k$ for each $v \in V(G)$, but any subgraph G does. In this section, we will investigate some structural properties of critical graphs.

For convenience, we introduce some notations. A k-, k^+ - or k^- - vertex is a vertex of degree k, at least k, or at most k, respectively. Similarly, we can define the k-, k^+ - or k^- -face. A k-, k^+ - or k^- -neighbor of v is a k-, k^+ - or k^- -vertex adjacent to v. For each $v \in V(G)$, let $v_1, v_2, \ldots, v_{d(v)}$ be the neighbors of v with $d(v_1) \leq d(v_2) \leq \cdots \leq d(v_{d(v)})$. Let $n_k(v)$ be the number of k-neighbors of v, $n_{k^+}(v)$ be the number of k^+ -neighbors of v, and $S_G(v) = \sum_{u \in N(v)} (d(u) - 1) = \sum_{u \in N(v)} d(u) - d(v)$. Obviously, the number of vertices that have a common neighbor with v in G is at most $S_G(v)$. So, every vertex v has at most $S_G(v)$ forbidden colors if the other vertices are injectively colored. Let G be a $(\Delta + 6)$ -critical graph, a 3-vertex v of G is called *bad* if $S_G(v) \leq \Delta + 5$. For integers k and d, a k(d)-vertex is a k-vertex adjacent to d2-vertices.

At the end of this section, we present the following properties of $(\Delta + 6)$ -critical graphs which have been proved in [4].

Lemma 4. $\delta(G) \geq 2$.

Lemma 5. For any edge $uv \in E(G)$, $\max\{S_G(u), S_G(v)\} \ge \Delta + 6$.

Lemma 6. G has no adjacent 2-vertices.

Lemma 7. Suppose that $3 \leq d(v) \leq 7$. If v_1 is a 2-neighbor of v, $r = n_{3^+}(v)$ and u_i (i = 1, ..., r) is the 3^+ -neighbor of v, then (1) $r \geq 2$, (2) $\sum_{i=1}^r d(u_i) \geq \Delta + 6 + 2r - d(v)$.

H. CHEN

3. Proof of Theorem 3

In this section, we always assume that a planar graph G has been embedded in the plane. The theorem is proved by contradiction. Suppose that the theorem is false. Let G be a $(\Delta + 6)$ -critical graph. It is easy to see that G is connected and $\delta(G) \geq 2$.

We apply a discharging procedure to complete the proof by showing that G does not exist. We assign to each vertex v a charge $\omega(v)$ such that $\omega(v) = 3d(v) - 10$ and to each face f a charge $\omega(f) = 2d(f) - 10$. Applying Euler's formula |V(G)| - |E(G)| + |F(G)| = 2 and the Handshaking Lemmas for vertices and faces for a plane graph, we have

$$\sum_{x \in V \cup F} \omega(x) = -20.$$

If we obtain a new weight $\omega^*(x)$ for all $x \in V(G) \cup F(G)$ by transferring weights from one element to another, then we also have $\sum \omega^*(x) = -20$. If these transfers result in $\omega^*(x) \ge 0$ for all $x \in V(G) \cup F(G)$, then we get a contradiction and the theorem is proved.

In [4], Bu et al. have proved that for a planar graph with girth $g \geq 5$ and $\Delta \geq 8$, $\chi_i^l(G) \leq \Delta + 6$. In the following, we only need to consider the case when $\Delta \leq 7$.

Claim 1. The following configurations are forbidden.

- (1) A 5(3)-vertex adjacent to a 5(1)-vertex.
- (2) A 6(4)-vertex adjacent to a 4(1)-vertex.
- (3) A 6(4)-vertex adjacent to a 5(3)-vertex.
- (4) A 6(3)-vertex adjacent to two 4(2)-vertices.
- (5) A 6(3)-vertex adjacent to a 5(3)-vertex, a 3-vertex and a 4-vertex.
- (6) A 7(5)-vertex adjacent to a 3(1)-vertex.

Proof. For (1), suppose that v is a 5(3)-vertex with $d(v_i) = 2$ for $1 \le i \le 3$ and $d(v_4) = 5$, where v_4 is a 5(1)-vertex. Let u be the adjacent 2-vertex of v_4 . For convenience, we assume that $d(v_5) = \Delta$. Let L be an arbitrary list assignment of G with $|L(x)| \ge \Delta + 6$ for each $x \in V(G)$. By the choice of G, $G - vv_1$ has an injective L-coloring c. Now we erase the colors on u, v and v_1 . Our aim is to recolor u, v and v_1 to extend c from $G - vv_1$ to the whole graph G to obtain a contradiction. Let $L'_c(v)$ be the set of available colors of v. Obviously,

$$\begin{split} L'_c(v_1) &\geq \Delta + 6 - (\Delta + 5 - d(v_1)) \geq 3, \\ L'_c(v) &\geq \Delta + 6 - (2 \times 3 + 5 + \Delta - d(v) - 1) \geq 1, \\ L'_c(u) &\geq \Delta + 6 - (\Delta + 5 - d(u) - 1) \geq 4. \end{split}$$

So we can recolor v, v_1, u in turn. The obtained coloring is an injective *L*-coloring of *G*.

For (2), the proof is quite similar to that of (1), and we omit it.

For (3), suppose that v is a 6(4)-vertex with $d(v_i) = 2$ for $1 \le i \le 4$ and $d(v_5) = 5$, where v_5 is a 5(3)-vertex. Let u, w, z be the adjacent 2-vertices of v_5 . For convenience, we consider the worst case and assume that $d(v_6) = \Delta$. Let L be an arbitrary list assignment of G with $|L(x)| \ge \Delta + 6$ for each $x \in V(G)$. By the choice of $G, G - vv_1$ has an injective L-coloring c. Now we erase the colors on v_1, v, u, w, z . Our aim is to recolor v_1, v, u, w, z to extend c from $G - vv_1$ to the whole graph G to obtain a contradiction. Let $L'_c(v)$ be the set of available colors of v. Obviously,

$$L'_{c}(v_{1}) \geq \Delta + 6 - (\Delta + 6 - d(v_{1})) \geq 2,$$

$$L'_{c}(v) \geq \Delta + 6 - (2 \times 4 + 5 + \Delta - d(v) - 3) \geq 2,$$

$$L'_{c}(u) \geq \Delta + 6 - (\Delta + 5 - d(u) - 3) \geq 6,$$

$$L'_{c}(w) \geq \Delta + 6 - (\Delta + 5 - d(w) - 3) \geq 6,$$

$$L'_{c}(z) \geq \Delta + 6 - (\Delta + 5 - d(z) - 3) \geq 6.$$

So we can recolor v, v_1, u, w, z in turn to obtain an injective L-coloring of G.

For (4), suppose that v is a 6(3)-vertex with $d(v_i) = 2$ for $1 \le i \le 3$ and $d(v_4) = d(v_5) = 4$. Let x_i, y_i, z_i be the other neighbor of v_i and $d(x_i) = d(y_i) = 2$ for i = 4, 5, respectively. For convenience, we consider the worst case and assume that $d(v_6) = \Delta$. Let L be an arbitrary list assignment of G with $|L(x)| \ge \Delta + 6$ for each $x \in V(G)$. By the choice of $G, G - vv_1$ has an injective L-coloring c. Now we erase the colors on $v_1, v, x_4, y_4, x_5, y_5$. Our aim is to recolor $v_1, v, x_4, y_4, x_5, y_5$ to extend c from $G - vv_1$ to the whole graph G to obtain a contradiction. Let $L'_c(v)$ be the set of available colors of v. Obviously,

$$L'_{c}(v_{1}) \geq \Delta + 6 - (\Delta + 6 - d(v_{1})) \geq 2,$$

$$L'_{c}(v) \geq \Delta + 6 - (2 \times 3 + 2 \times 4 + \Delta - d(v) - 4) \geq 2,$$

$$L'_{c}(x_{4}) \geq \Delta + 6 - (\Delta + 4 - d(x_{4}) - 2) \geq 6,$$

$$L'_{c}(y_{4}) \geq 6, \ L'_{c}(x_{5}) \geq 6, \ L'_{c}(y_{5}) \geq 6.$$

So we can recolor $v, v_1, x_4, y_4, x_5, y_5$ in turn. The obtained coloring is an injective *L*-coloring of *G*.

For (5), suppose that v is a 6(3)-vertex with $d(v_i) = 2$ for $1 \le i \le 3$, $d(v_4) = 3$, $d(v_5) = 4$ and $d(v_6) = 5$, where v_6 is a 5(3)-vertex. Let u, w, z be the adjacent 2-vertices of v_6 . Let L be an arbitrary list assignment of G with $|L(x)| \ge \Delta + 6$ for each $x \in V(G)$. By the choice of $G, G - vv_1$ has an injective L-coloring c. Now we erase the colors on v_1, v, u, w, z . Our aim is to recolor v_1, v, u, w, z to extend c from $G - vv_1$ to the whole graph G to obtain a contradiction. Let $L'_c(v)$ be the set of available colors of v. Obviously,

$$\begin{split} L'_c(v_1) &\geq \Delta + 6 - (\Delta + 6 - d(v_1)) \geq 2, \\ L'_c(v) &\geq \Delta + 6 - (2 \times 3 + 3 + 4 + 5 - d(v) - 3) \geq 3, \\ L'_c(u) &\geq \Delta + 6 - (\Delta + 5 - d(u) - 3) \geq 6, \ L'_c(w) \geq 6, \ L'_c(z) \geq 6. \end{split}$$

H. CHEN

So we can recolor v, v_1, u, w, z in turn to obtain an injective L-coloring of G.

For (6), suppose that v is a 7(5)-vertex with $d(v_i) = 2$ for $1 \le i \le 5$, $d(v_6) = 3$, where v_6 is a 3(1)-vertex. Let u be the adjacent 2-vertices of v_6 . For convenience, we assume that $d(v_7) = \Delta$. Let L be an arbitrary list assignment of G with $|L(x)| \ge \Delta + 6$ for each $x \in V(G)$. By the choice of $G, G - vv_1$ has an injective L-coloring c. Now we erase the colors on v_1, v, u . Our aim is to recolor v_1, v, u to extend c from $G - vv_1$ to the whole graph G to obtain a contradiction. Let $L'_c(v)$ be the set of available colors of v. Obviously, $L'_c(v_1) \ge 1$, $L'_c(v) \ge 1$, $L'_c(u) \ge 6$. So we can recolor v, v_1, u in turn to obtain an injective L-coloring of G.

We list the following discharging rules.

R1. Each 2-vertex receives 2 from each adjacent 3^+ -vertex.

- R2. Suppose d(v) = 3 and $uv \in E$.
 - (1) A 3(1)-vertex receives $\frac{3}{2}$ from each adjacent 7-vertex.
 - (2) Suppose d(u) = 3 and $S_G(u) \ge \Delta + 6$. If $S_G(v) \le \Delta + 5$, then v receives $\frac{1}{3}$ from u. Otherwise, v receives nothing from u.
 - (3) If $4 \le d(u) \le 5$, then v receives $\frac{1}{3}$ from u.
 - (4) If $6 \le d(u) \le 7$ and v is adjacent to a bad 3-vertex, then v receives $\frac{2}{3}$ from u. Otherwise, v receives $\frac{1}{2}$ from u except v is a 3(1)-vertex.
- R3. Each 4(2)-vertex receives 1 from each adjacent 6⁺-vertex. Each 4(1)-vertex receives $\frac{1}{6}$ from each adjacent 5⁺-vertex.
- R4. Each 5(3)-vertex receives $\frac{1}{2}$ from each adjacent 5(0)-vertex, $\frac{1}{2}$ from each adjacent 6⁺-vertex.

Let f be a k-face of G, $k \ge 5$. Obviously, $\omega^*(f) = 2k - 10 \ge 0$.

Let v be a k-vertex of $G, k \ge 2$. We will check that each vertex has a non-negative charge after the discharging process.

If k = 2, then $\omega(v) = -4$. By R1, $\omega^*(v) = -4 + 2 \times 2 = 0$.

If k = 3, then $\omega(v) = -1$. By Lemma 7(1), $n_2(v) \le 1$. If $n_2(v) = 1$, then $d(v_2) + d(v_3) \ge \Delta + 7$ by Lemma 7(2), that is, $\Delta = 7$ and $d(v_2) = d(v_3) = 7$. So $\omega^*(v) = -1 - 2 + 2 \times \frac{3}{2} = 0$ by R1 and R2(1).

Suppose $n_2(v) = 0$. If $2 \le n_3(v) \le 3$, it is obviously $S_G(v) \le \Delta + 5$. So $S_G(v_i) \ge \Delta + 6$ for i = 1, 2, 3. By R2, v receives at least $\frac{1}{3}$ from v_i . So $\omega^*(v) \ge -1 + 3 \times \frac{1}{3} = 0$.

Suppose $n_3(v) = 1$. If $S_G(v) \le \Delta + 5$, then $S_G(v_1) \ge \Delta + 6$ by Lemma 5. By R2, v receives at least $\frac{1}{3}$ from v_i , i = 1, 2, 3. So $\omega^*(v) \ge -1+3 \times \frac{1}{3} = 0$. Suppose $S_G(v) \ge \Delta + 6$. Then $d(v_3) \ge d(v_2) \ge 6$. If $S_G(v_1) \le \Delta + 5$, then v sends $\frac{1}{3}$ to v_1 and receives $\frac{2}{3}$ from each of v_2 and v_3 . So $\omega^*(v) \ge -1 - \frac{1}{3} + 2 \times \frac{2}{3} = 0$. If $S_G(v_1) \ge \Delta + 6$, then v receives $\frac{1}{2}$ from each of v_2 and v_3 . So $\omega^*(v) \ge -1 - \frac{1}{3} + 2 \times \frac{2}{3} = 0$. If $S_G(v_1) \ge \Delta + 6$, then v receives $\frac{1}{2}$ from each of v_2 and v_3 . So $\omega^*(v) \ge -1 + 2 \times \frac{1}{2} = 0$.

If $n_3(v) = 0$, then v receives at least $\frac{1}{3}$ from each adjacent vertex by R2. So $\omega^*(v) = -1 + 3 \times \frac{1}{3} = 0$.

If k = 4, then $\omega(v) = 2$. By Lemma 7(1), $n_2(v) \le 2$.

If $n_2(v) = 2$, then the other two adjacent vertices must be 6⁺-vertices. By R3, $\omega^*(v) \ge 2 - 2 \times 2 + 2 \times 1 = 0$.

If $n_2(v) = 1$, then $n_3(v) \le 1$. (If $n_3(v) \ge 2$, then $S_G(v) < \Delta + 6$, $S_G(v_1) < \Delta + 6$, a contradiction to Lemma 5.) If $n_3(v) = 1$, then v_3, v_4 are 5⁺-vertices by Lemma 5. So $\omega^*(v) \ge 2 - 2 - \frac{1}{3} + 2 \times \frac{1}{6} = 0$ by R3. If $n_3(v) = 0$, then $\omega^*(v) \ge 2 - 2 = 0$.

If $n_2(v) = 0$, then $\omega^*(v) \ge 2 - 4 \times \frac{1}{3} > 0$.

If k = 5, then $\omega(v) = 5$. By Lemma 7(1), $n_2(v) \leq 3$. Suppose $n_2(v) = 3$. By Lemma 7(2), the other two adjacent vertices must be 5⁺-vertices, and the 5-vertex adjacent to v must be a 5(0)-vertex by Claim 1(1). It follows that $\omega^*(v) \geq 5 - 3 \times 2 + 2 \times \frac{1}{2} = 0$ by R4. If $n_2(v) = 2$, then $n_3(v) \leq 1$ by Lemma 5. Hence, $\omega^*(v) \geq 5 - 2 \times 2 - 1 \times \frac{1}{3} - 2 \times \frac{1}{6} > 0$ by R1, R2, R3 and R4. If $n_2(v) = 1$, then $\omega^*(v) \geq 5 - 1 \times 2 - 4 \times \frac{1}{3} > 0$. If $n_2(v) = 0$, then v sends at most $\frac{1}{2}$ to its neighbors by R2, R3 and R4. So $\omega^*(v) \geq 5 - 5 \times \frac{1}{2} > 0$.

If k = 6, then $\Delta \ge 6$ and $\omega(v) = 8$. By Lemma 7(1), $n_2(v) \le 4$. If $n_2(v) = 4$, then $d(v_5) + d(v_6) \ge \Delta + 4$ by Lemma 7(2). So $\min\{d(v_5), d(v_6)\} \ge 4$. By Claim 1(2) and Claim 1(3), v_5, v_6 are not 4(1)-vertices, 4(2)-vertices, 5(3)-vertices. By R3, R4, v sends nothing to v_5, v_6 . So $\omega^*(v) \ge 8 - 2 \times 4 = 0$. If $n_2(v) = 3$, by Lemma 7(2), $d(v_4) + d(v_5) + d(v_6) \ge \Delta + 6 \ge 12$. So the degree sequence of v_4, v_5, v_6 is $(3, 3, 6^+)$, or $(3, 4, 5^+)$ (the 5-vertex is not a 5(3)-vertex by Claim 1(5)), or $(3, 5^+, 5^+)$, or $(4, 4^+, 4^+)$ (there exists at most one 4(2)-vertex by Claim 1(4)), or $(5^+, 5^+, 5^+)$. By R2, R3 and R4, v sends at most $\max\{2 \times \frac{2}{3}, \frac{2}{3} + 1, \frac{2}{3} + 2 \times \frac{1}{2}, 1 + 2 \times \frac{1}{2}, 3 \times \frac{1}{2}\} = 2$ to v_4, v_5 and v_6 in total. So $\omega * (v) \ge 8 - 3 \times 2 - 2 = 0$. If $0 \le n_2(v) \le 2$, then $\omega^*(v) \ge 8 - 2n_2(v) - 1 \times (k - n_2(v)) \ge 0$.

If k = 7, then $\Delta = 7$ and $\omega(v) = 11$. By Lemma 7(1), $n_2(v) \leq 5$.

Suppose $n_2(v) = 5$. By Lemma 7(2), $d(v_6) + d(v_7) \ge \Delta + 3 = 10$. So the degree sequence of (v_6, v_7) is (3,7), or $(4, 6^+)$ or $(5^+, 5^+)$. By Claim 1(6), a 7(5)-vertex is not adjacent to a 3(1)-vertex, and v sends at most $\max\{\frac{2}{3}, 1, 2 \times \frac{1}{2}\} = 1$ to v_6 and v_7 in total. So $\omega^*(v) \ge 11 - 5 \times 2 - 1 = 0$.

Suppose $n_2(v) = 4$. By Lemma 7(2), $d(v_5) + d(v_6) + d(v_7) \ge \Delta + 5 = 12$. So the degree sequence of (v_5, v_6, v_7) is $(3, 3, 6^+)$, or $(3, 4^+, 5^+)$ or $(4^+, 4^+, 4^+)$. Thus v sends at most max $\{\frac{3}{2} \times 2, \frac{3}{2} + 1 + \frac{1}{2}, 3 \times 1\} = 3$ to v_5, v_6 and v_7 in total. So $\omega^*(v) \ge 11 - 4 \times 2 - 3 = 0$.

Suppose $n_2(v) = 3$. Then $d(v_4) + d(v_5) + d(v_6) + d(v_7) \ge \Delta + 7 = 14$ by Lemma 7(2). So $n_3(v) \le 3$. If $n_3(v) = 3$, then $d(v_7) \ge 5$. So $\omega^*(v) \ge 11 - 3 \times 2 - 3 \times \frac{3}{2} - \frac{1}{2} = 0$. If $n_3(v) \le 2$, then $\omega^*(v) \ge 11 - 3 \times 2 - 2 \times \frac{3}{2} - 2 \times 1 = 0$. Suppose $n_2(v) = 2$. It is easy to check $n_3(v) \le 4$. So $\omega^*(v) \ge 11 - 2 \times 2 - 4 \times \frac{3}{2} - 1 = 0$ by the discharging rules.

Suppose $n_2(v) \leq 1$. Then v sends 2 to each 2-neighbor and at most $\frac{3}{2}$ to each other neighbor. So $\omega^*(v) \geq 11 - 2 \times 1 - 6 \times \frac{3}{2} = 0$.

We have checked $\omega^*(x) \ge 0$ for all $x \in V(G) \cup \overline{F}(G)$, a contradiction occurs because $0 \le \sum_{x \in V \cup F} \omega^*(x) = \sum_{x \in V \cup F} \omega(x) = -20$.

This completes the proof when $\Delta \leq 7$ and hence that of the whole Theorem 3.

Acknowledgment. The author thanks the anonymous reviewers for their useful comments.

References

- O. V. Borodin and A. O. Ivanova, List injective colorings of planar graphs, Discrete Math. 311 (2011), no. 2-3, 154–165. https://doi.org/10.1016/j.disc.2010.10.008
- Y. H. Bu, D. Chen, A. Raspaud, and W. Wang, Injective coloring of planar graphs, Discrete Appl. Math. 157 (2009), no. 4, 663-672. https://doi.org/10.1016/j.dam. 2008.08.016
- [3] Y. H. Bu and C. Huang, List injective coloring of a class of planar graphs without short cycles, Discrete Math. Algorithms Appl. 10 (2018), no. 5, 1850068, 12 pp. https: //doi.org/10.1142/S1793830918500684
- [4] Y. H. Bu and K. Lu, Injective coloring of planar graphs with girth 7, Discrete Math. Algorithms Appl. 4 (2012), no. 2, 1250034, 8 pp. https://doi.org/10.1142/ S1793830912500346
- [5] Y. H. Bu and K. Lu, *List injective coloring of planar graphs with girth* 5, 6, 8, Discrete Appl. Math. 161 (2013), no. 10-11, 1367–1377. https://doi.org/10.1016/j.dam.2012. 12.017
- [6] Y. H. Bu, C. Wang, and S. Yang, List injective coloring of planar graphs, Ars Combin. 141 (2018), 191–211.
- Y. H. Bu and S. Yang, List injective coloring of planar graphs with girth g ≥ 5, Discrete Math. Algorithms Appl. 6 (2014), no. 1, 1450006, 12 pp. https://doi.org/10.1142/ \$1793830914500062
- [8] H. Y. Chen and J. L. Wu, List injective coloring of planar graphs with girth g ≥ 6, Discrete Math. 339 (2016), no. 12, 3043–3051. https://doi.org/10.1016/j.disc.2016. 06.017
- [9] D. W. Cranston, S.-J. Kim, and G. Yu, *Injective colorings of sparse graphs*, Discrete Math. **310** (2010), no. 21, 2965–2973. https://doi.org/10.1016/j.disc.2010.07.003
- [10] D. W. Cranston, S.-J. Kim, and G. Yu, Injective colorings of graphs with low average degree, Algorithmica 60 (2011), no. 3, 553–568. https://doi.org/10.1007/s00453-010-9425-x
- [11] D. Dimitrov, B. Lužar, and R.Škrekovski, Injective coloring of planar graphs with $\Delta + 2$ colors, preprint.
- [12] W. Dong and W. Lin, *Injective coloring of planar graphs with girth* 6, Discrete Math.
 313 (2013), no. 12, 1302–1311. https://doi.org/10.1016/j.disc.2013.02.014
- W. Dong and W. Lin, Injective coloring of plane graphs with girth 5, Discrete Math. 315 (2014), 120-127. https://doi.org/10.1016/j.disc.2013.10.017
- [14] A. Doyon, G. Hahn, and A. Raspaud, Some bounds on the injective chromatic number of graphs, Discrete Math. 310 (2010), no. 3, 585–590. https://doi.org/10.1016/j.disc. 2009.04.020
- [15] G. Hahn, J. Kratochvíl, J. Širáň, and D. Sotteau, On the injective chromatic number of graphs, Discrete Math. 256 (2002), no. 1-2, 179–192. https://doi.org/10.1016/S0012-365X(01)00466-6
- [16] R. Li and B. G. Xu, Injective choosability of planar graphs of girth five and six, Discrete Math. 312 (2012), no. 6, 1260–1265. https://doi.org/10.1016/j.disc.2011.10.029
- [17] B. Lužar, Planar graphs with largest injective chromatic numbers, in: IMFM Preprint Series, 48, 2010, p. 1110.

- [18] B. Lužar, R. Škrekovski, and M. Tancer, Injective colorings of planar graphs with few colors, Discrete Math. 309 (2009), no. 18, 5636-5649. https://doi.org/10.1016/j. disc.2008.04.005
- [19] G. Wegner, Graphs with Given Diameter and a Coloring Problem, Technical Report, University of Dortmund, Germany, 1977.

HONGYU CHEN SCHOOL OF SCIENCE SHANGHAI INSTITUTE OF TECHNOLOGY SHANGHAI, 201418, P. R. CHINA *Email address*: hongyuchen86@163.com