LIST INJECTIVE COLORING OF PLANAR GRAPHS WITH GIRTH AT LEAST FIVE

Hongyu Chen

Abstract

A vertex coloring of a graph G is called injective if any two vertices with a common neighbor receive distinct colors. A graph G is injectively k-choosable if any list L of admissible colors on $V(G)$ of size k allows an injective coloring φ such that $\varphi(v) \in L(v)$ whenever $v \in V(G)$. The least k for which G is injectively k-choosable is denoted by $\chi_{i}^{l}(G)$. For a planar graph G, Bu et al. proved that $\chi_{i}^{l}(G) \leq \Delta+6$ if girth $g \geq 5$ and maximum degree $\Delta(G) \geq 8$. In this paper, we improve this result by showing that $\chi_{i}^{l}(G) \leq \Delta+6$ for $g \geq 5$ and arbitrary $\Delta(G)$.

1. Introduction

All graphs considered in this paper are finite, simple and undirected. Let $V(G), E(G), F(G), \Delta(G), \delta(G)$ and $g(G)$ be the vertex set, edge set, face set, maximum degree, minimum degree and girth of G, respectively, and let $N_{G}(v)=\{u \mid u v \in E(G)\}$.

An injective k-coloring of a graph G is a mapping $c: V(G) \rightarrow\{1,2, \ldots, k\}$ such that for any two vertices $u, v \in V(G), c(u) \neq c(v)$ if $N(u) \cap N(v) \neq \emptyset$. The injective chromatic number of G, denoted by $\chi_{i}(G)$, is the least integer k such that G has an injective k-coloring.

A list assignment of a graph G is a mapping L which assigns a color list $L(v)$ to each vertex $v \in V(G)$. Given a list assignment L of G, an injective coloring φ of G is called an injective L-coloring if $\varphi(v) \in L(v)$ for each $v \in V(G)$. A graph G is injectively k-choosable if G has an injective L-coloring for any list assignment L with $|L(v)| \geq k$ for each $v \in V(G)$. The injective choosability number of G, denoted by $\chi_{i}^{l}(G)$, is the least integer k such that G is injectively k-choosable. Note that $\chi_{i}(G) \leq \chi_{i}^{l}(G)$ for every graph G. Borodin et al. [1] proved that for a planar graph, $\chi_{i}^{l}(G)=\chi_{i}(G)=\Delta$ if $\Delta \geq 16$ and $g=7$, or $\Delta \geq 10$ and $8 \leq g \leq 9, \Delta \geq 6$ and $10 \leq g \leq 11$, or $\Delta=5$ and $g \geq 12$.

A 2-distance k-coloring of a graph G is a mapping $c: V(G) \rightarrow\{1,2, \ldots, k\}$ such that for any two vertices $u, v \in V(G), c(u) \neq c(v)$ if $1 \leq d\left(v_{1}, v_{2}\right) \leq 2$.

[^0]The 2-distance chromatic number of G, denoted by $\chi_{2}(G)$, is the least integer k such that G has a 2 -distance k-coloring.

The concept of injective coloring was introduced by Hahn et al. [15] in 2002. They showed the injective chromatic number of complete graphs, paths, cycles, stars and proved that $\chi(G) \leq \chi_{i}(G) \leq \Delta^{2}(G)-\Delta(G)+1$ if G is connected and $G \neq K_{2}$.

Obviously, an injective coloring is not necessarily proper, and this is the only difference between an injective coloring and a 2-distance coloring. But if every edge of a graph is incident with a triangle, they are the same. For the 2distance coloring of a planar graph, Wegner [19] posed the following conjecture in 1977.
Conjecture A. Let G be a planar graph with maximum degree Δ.
(1) $\chi_{2}(G) \leq 7$ if $\Delta=3$;
(2) $\chi_{2}(G) \leq \Delta+5$ if $4 \leq \Delta \leq 7$;
(3) $\chi_{2}(G) \leq\left\lfloor\frac{3 \Delta}{2}\right\rfloor+1$ if $\Delta \geq 8$.

On the trivial fact that $\chi_{i}(G) \leq \chi_{2}(G)$, in 2010, Lužar posed the following conjecture about planar graphs in [17]. The upper bounds are tight if Conjecture B is true.

Conjecture B. Let G be a planar graph with maximum degree Δ.
(1) $\chi_{i}(G) \leq 5$ if $\Delta=3$;
(2) $\chi_{i}(G) \leq \Delta+5$ if $4 \leq \Delta \leq 7$;
(3) $\chi_{i}(G) \leq\left\lfloor\frac{3 \Delta}{2}\right\rfloor+1$ if $\Delta \geq 8$.

Clearly, $\Delta(G) \leq \chi_{i}(G) \leq|V(G)|$, so it seems natural to describe graphs of $\chi_{i}(G)=\Delta(G)$. For a planar graph, the following sufficient conditions (in terms of g and Δ) are known: $\Delta \geq 71$ and $g \geq 7$ [2], $\Delta \geq 4$ and $g \geq 13$ [9], and $\Delta \geq 3$ and $g \geq 19$ [18].

Many researches about the injective chromatic number have been studied under the limitation of maximum degree Δ and maximum average degree $\operatorname{mad}(G)$, where $\operatorname{mad}(G)=\max _{\emptyset \neq H \subseteq G}\left\{\frac{2|E(H)|}{|V(H)|}\right\}$, there are the following results.
Theorem 1. Let G be a graph with maximum degree Δ.
(1) $\chi_{i}(G) \leq \Delta+3$ if $\operatorname{mad}(G)<\frac{14}{5} ; \chi_{i}(G) \leq \Delta+4$ if $\operatorname{mad}(G)<3 ; \chi_{i}(G) \leq$ $\Delta+8$ if $\operatorname{mad}(G)<\frac{10}{3}[14]$.
(2) $\chi_{i}^{l}(G) \leq \Delta+2$ if $\operatorname{mad}(G)<\frac{14}{5}$ and $\Delta \geq 4 ; \chi_{i}^{l}(G) \leq 5$ if $\operatorname{mad}(G)<\frac{36}{13}$ and $\Delta=3$ [10].
(3) $\chi_{i}^{l}(G) \leq \Delta+2$ if $\operatorname{mad}(G)<3$ and $\Delta \geq 12$; $\chi_{i}^{l}(G) \leq \Delta+4$ if $\operatorname{mad}(G)<\frac{10}{3}$ and $\Delta \geq 30 ; \chi_{i}^{l}(G) \leq \Delta+5$ if $\operatorname{mad}(G)<\frac{10}{3}$ and $\Delta \geq 18 ; \chi_{i}^{l}(G) \leq \Delta+6$ if $\operatorname{mad}(G)<\frac{10}{3}$ and $\Delta \geq 14$ [16].
(4) $\chi_{i}(G) \leq \Delta+1$ if $\operatorname{mad}(G) \leq \frac{5}{2} ; \chi_{i}(G)=\Delta$ if $\operatorname{mad}(G)<\frac{42}{19}[9]$.

For a planar graph G with girth at least $g, \operatorname{mad}(G)<\frac{2 g}{g-2}$. The issue of the injective chromatic number is discussed under the limitation of girth and maximum degree in $[1,4,5,7,8,11,12]$, which can be described as follows.

Theorem 2. Let G be a planar graph with $g(G) \geq g^{\prime}$ and $\Delta(G) \geq D$.
(1) If $\left(g^{\prime}, D\right) \in\{(9,4),(7,7),(6,17)\}$, then $\chi_{i}(G) \leq \Delta+1$.
(2) If $\left(g^{\prime}, D\right) \in\{(7,1),(6,9)\}$, then $\chi_{i}(G) \leq \Delta+2$.
(3) If $\left(g^{\prime}, D\right)=\{(8,5)\}$, then $\chi_{i}^{l}(G) \leq \Delta+1$. If $\left(g^{\prime}, D\right)=\{(6,8)\}$, then $\chi_{i}^{l}(G) \leq \Delta+2$. If $\left(g^{\prime}, D\right)=\{(6,24)\}$, then $\chi_{i}^{l}(G) \leq \Delta+1$. If $g^{\prime}=6$, then $\chi_{i}^{l}(G) \leq \Delta+3$.

For a planar graph G with girth $g \geq 5$, Bu et al. [7] proved that if $\Delta \geq 8$, then $\chi_{i}^{l}(G) \leq \Delta+6$. In [5], they proved that if $\Delta \geq 13$, then $\chi_{i}^{l}(G) \leq \Delta+4$, and for any $\Delta, \chi_{i}^{l}(G) \leq \Delta+7$, and in [3], they improved the result and showed that if $\Delta \geq 11$, then $\chi_{i}^{l}(G) \leq \Delta+4$. In [6], Bu et al. proved that if $\Delta \geq 10$, then $\chi_{i}^{l}(G) \leq \Delta+5$. So far, for a planar graph G with girth $g \geq 5$ and for any Δ, the best result of injective chromatic number is $\chi_{i}(G) \leq \Delta+6$ [13]. In this paper, we improve these results by proving the following theorem, which is closer to Conjecture B .
Theorem 3. If G is a planar graph with girth $g(G) \geq 5$, then $\chi_{i}^{l}(G) \leq \Delta+6$.

2. Structural properties of critical graphs

A graph G is called k-critical if G does not admit any injective L-coloring with $|L(v)| \geq k$ for each $v \in V(G)$, but any subgraph G does. In this section, we will investigate some structural properties of critical graphs.

For convenience, we introduce some notations. A $k-, k^{+}$- or k^{-}- vertex is a vertex of degree k, at least k, or at most k, respectively. Similarly, we can define the $k-, k^{+}$- or k^{-}-face. A k-, k^{+}- or k^{-}-neighbor of v is a k-, k^{+}- or k^{-}-vertex adjacent to v. For each $v \in V(G)$, let $v_{1}, v_{2}, \ldots, v_{d(v)}$ be the neighbors of v with $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \cdots \leq d\left(v_{d(v)}\right)$. Let $n_{k}(v)$ be the number of k-neighbors of $v, n_{k^{+}}(v)$ be the number of k^{+}-neighbors of v, and $S_{G}(v)=\sum_{u \in N(v)}(d(u)-1)=\sum_{u \in N(v)} d(u)-d(v)$. Obviously, the number of vertices that have a common neighbor with v in G is at most $S_{G}(v)$. So, every vertex v has at most $S_{G}(v)$ forbidden colors if the other vertices are injectively colored. Let G be a $(\Delta+6)$-critical graph, a 3-vertex v of G is called bad if $S_{G}(v) \leq \Delta+5$. For integers k and d, a $k(d)$-vertex is a k-vertex adjacent to d 2-vertices.

At the end of this section, we present the following properties of $(\Delta+6)$ critical graphs which have been proved in [4].

Lemma 4. $\delta(G) \geq 2$.
Lemma 5. For any edge $u v \in E(G), \max \left\{S_{G}(u), S_{G}(v)\right\} \geq \Delta+6$.
Lemma 6. G has no adjacent 2-vertices.
Lemma 7. Suppose that $3 \leq d(v) \leq 7$. If v_{1} is a 2 -neighbor of $v, r=n_{3^{+}}(v)$ and $u_{i}(i=1, \ldots, r)$ is the 3^{+}-neighbor of v, then
(1) $r \geq 2$,
(2) $\sum_{i=1}^{r} d\left(u_{i}\right) \geq \Delta+6+2 r-d(v)$.

3. Proof of Theorem 3

In this section, we always assume that a planar graph G has been embedded in the plane. The theorem is proved by contradiction. Suppose that the theorem is false. Let G be a $(\Delta+6)$-critical graph. It is easy to see that G is connected and $\delta(G) \geq 2$.

We apply a discharging procedure to complete the proof by showing that G does not exist. We assign to each vertex v a charge $\omega(v)$ such that $\omega(v)=$ $3 d(v)-10$ and to each face f a charge $\omega(f)=2 d(f)-10$. Applying Euler's formula $|V(G)|-|E(G)|+|F(G)|=2$ and the Handshaking Lemmas for vertices and faces for a plane graph, we have

$$
\sum_{x \in V \cup F} \omega(x)=-20
$$

If we obtain a new weight $\omega^{*}(x)$ for all $x \in V(G) \cup F(G)$ by transferring weights from one element to another, then we also have $\sum \omega^{*}(x)=-20$. If these transfers result in $\omega^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$, then we get a contradiction and the theorem is proved.

In [4], Bu et al. have proved that for a planar graph with girth $g \geq 5$ and $\Delta \geq 8, \chi_{i}^{l}(G) \leq \Delta+6$. In the following, we only need to consider the case when $\Delta \leq 7$.

Claim 1. The following configurations are forbidden.
(1) A 5(3)-vertex adjacent to a $5(1)$-vertex.
(2) A 6(4)-vertex adjacent to a 4(1)-vertex.
(3) A 6(4)-vertex adjacent to a $5(3)$-vertex.
(4) A 6(3)-vertex adjacent to two 4(2)-vertices.
(5) A $6(3)$-vertex adjacent to a $5(3)$-vertex, a 3 -vertex and a 4 -vertex.
(6) A 7(5)-vertex adjacent to a $3(1)$-vertex.

Proof. For (1), suppose that v is a $5(3)$-vertex with $d\left(v_{i}\right)=2$ for $1 \leq i \leq 3$ and $d\left(v_{4}\right)=5$, where v_{4} is a $5(1)$-vertex. Let u be the adjacent 2 -vertex of v_{4}. For convenience, we assume that $d\left(v_{5}\right)=\Delta$. Let L be an arbitrary list assignment of G with $|L(x)| \geq \Delta+6$ for each $x \in V(G)$. By the choice of $G, G-v v_{1}$ has an injective L-coloring c. Now we erase the colors on u, v and v_{1}. Our aim is to recolor u, v and v_{1} to extend c from $G-v v_{1}$ to the whole graph G to obtain a contradiction. Let $L_{c}^{\prime}(v)$ be the set of available colors of v. Obviously,

$$
\begin{aligned}
L_{c}^{\prime}\left(v_{1}\right) & \geq \Delta+6-\left(\Delta+5-d\left(v_{1}\right)\right) \geq 3 \\
L_{c}^{\prime}(v) & \geq \Delta+6-(2 \times 3+5+\Delta-d(v)-1) \geq 1 \\
L_{c}^{\prime}(u) & \geq \Delta+6-(\Delta+5-d(u)-1) \geq 4
\end{aligned}
$$

So we can recolor v, v_{1}, u in turn. The obtained coloring is an injective L coloring of G.

For (2), the proof is quite similar to that of (1), and we omit it.

For (3), suppose that v is a $6(4)$-vertex with $d\left(v_{i}\right)=2$ for $1 \leq i \leq 4$ and $d\left(v_{5}\right)=5$, where v_{5} is a $5(3)$-vertex. Let u, w, z be the adjacent 2 -vertices of v_{5}. For convenience, we consider the worst case and assume that $d\left(v_{6}\right)=\Delta$. Let L be an arbitrary list assignment of G with $|L(x)| \geq \Delta+6$ for each $x \in V(G)$. By the choice of $G, G-v v_{1}$ has an injective L-coloring c. Now we erase the colors on v_{1}, v, u, w, z. Our aim is to recolor v_{1}, v, u, w, z to extend c from $G-v v_{1}$ to the whole graph G to obtain a contradiction. Let $L_{c}^{\prime}(v)$ be the set of available colors of v. Obviously,

$$
\begin{aligned}
L_{c}^{\prime}\left(v_{1}\right) & \geq \Delta+6-\left(\Delta+6-d\left(v_{1}\right)\right) \geq 2 \\
L_{c}^{\prime}(v) & \geq \Delta+6-(2 \times 4+5+\Delta-d(v)-3) \geq 2 \\
L_{c}^{\prime}(u) & \geq \Delta+6-(\Delta+5-d(u)-3) \geq 6 \\
L_{c}^{\prime}(w) & \geq \Delta+6-(\Delta+5-d(w)-3) \geq 6 \\
L_{c}^{\prime}(z) & \geq \Delta+6-(\Delta+5-d(z)-3) \geq 6
\end{aligned}
$$

So we can recolor v, v_{1}, u, w, z in turn to obtain an injective L-coloring of G.
For (4), suppose that v is a $6(3)$-vertex with $d\left(v_{i}\right)=2$ for $1 \leq i \leq 3$ and $d\left(v_{4}\right)=d\left(v_{5}\right)=4$. Let x_{i}, y_{i}, z_{i} be the other neighbor of v_{i} and $d\left(x_{i}\right)=$ $d\left(y_{i}\right)=2$ for $i=4,5$, respectively. For convenience, we consider the worst case and assume that $d\left(v_{6}\right)=\Delta$. Let L be an arbitrary list assignment of G with $|L(x)| \geq \Delta+6$ for each $x \in V(G)$. By the choice of $G, G-v v_{1}$ has an injective L-coloring c. Now we erase the colors on $v_{1}, v, x_{4}, y_{4}, x_{5}, y_{5}$. Our aim is to recolor $v_{1}, v, x_{4}, y_{4}, x_{5}, y_{5}$ to extend c from $G-v v_{1}$ to the whole graph G to obtain a contradiction. Let $L_{c}^{\prime}(v)$ be the set of available colors of v. Obviously,

$$
\begin{aligned}
L_{c}^{\prime}\left(v_{1}\right) & \geq \Delta+6-\left(\Delta+6-d\left(v_{1}\right)\right) \geq 2 \\
L_{c}^{\prime}(v) & \geq \Delta+6-(2 \times 3+2 \times 4+\Delta-d(v)-4) \geq 2 \\
L_{c}^{\prime}\left(x_{4}\right) & \geq \Delta+6-\left(\Delta+4-d\left(x_{4}\right)-2\right) \geq 6, \\
L_{c}^{\prime}\left(y_{4}\right) & \geq 6, L_{c}^{\prime}\left(x_{5}\right) \geq 6, L_{c}^{\prime}\left(y_{5}\right) \geq 6 .
\end{aligned}
$$

So we can recolor $v, v_{1}, x_{4}, y_{4}, x_{5}, y_{5}$ in turn. The obtained coloring is an injective L-coloring of G.

For (5), suppose that v is a $6(3)$-vertex with $d\left(v_{i}\right)=2$ for $1 \leq i \leq 3$, $d\left(v_{4}\right)=3, d\left(v_{5}\right)=4$ and $d\left(v_{6}\right)=5$, where v_{6} is a $5(3)$-vertex. Let u, w, z be the adjacent 2 -vertices of v_{6}. Let L be an arbitrary list assignment of G with $|L(x)| \geq \Delta+6$ for each $x \in V(G)$. By the choice of $G, G-v v_{1}$ has an injective L-coloring c. Now we erase the colors on v_{1}, v, u, w, z. Our aim is to recolor v_{1}, v, u, w, z to extend c from $G-v v_{1}$ to the whole graph G to obtain a contradiction. Let $L_{c}^{\prime}(v)$ be the set of available colors of v. Obviously,

$$
\begin{aligned}
L_{c}^{\prime}\left(v_{1}\right) & \geq \Delta+6-\left(\Delta+6-d\left(v_{1}\right)\right) \geq 2 \\
L_{c}^{\prime}(v) & \geq \Delta+6-(2 \times 3+3+4+5-d(v)-3) \geq 3 \\
L_{c}^{\prime}(u) & \geq \Delta+6-(\Delta+5-d(u)-3) \geq 6, L_{c}^{\prime}(w) \geq 6, L_{c}^{\prime}(z) \geq 6 .
\end{aligned}
$$

So we can recolor v, v_{1}, u, w, z in turn to obtain an injective L-coloring of G.
For (6), suppose that v is a $7(5)$-vertex with $d\left(v_{i}\right)=2$ for $1 \leq i \leq 5$, $d\left(v_{6}\right)=3$, where v_{6} is a $3(1)$-vertex. Let u be the adjacent 2 -vertices of v_{6}. For convenience, we assume that $d\left(v_{7}\right)=\Delta$. Let L be an arbitrary list assignment of G with $|L(x)| \geq \Delta+6$ for each $x \in V(G)$. By the choice of $G, G-v v_{1}$ has an injective L-coloring c. Now we erase the colors on v_{1}, v, u. Our aim is to recolor v_{1}, v, u to extend c from $G-v v_{1}$ to the whole graph G to obtain a contradiction. Let $L_{c}^{\prime}(v)$ be the set of available colors of v. Obviously, $L_{c}^{\prime}\left(v_{1}\right) \geq 1, L_{c}^{\prime}(v) \geq 1$, $L_{c}^{\prime}(u) \geq 6$. So we can recolor v, v_{1}, u in turn to obtain an injective L-coloring of G.

We list the following discharging rules.
R1. Each 2-vertex receives 2 from each adjacent 3^{+}-vertex.
R2. Suppose $d(v)=3$ and $u v \in E$.
(1) A 3(1)-vertex receives $\frac{3}{2}$ from each adjacent 7 -vertex.
(2) Suppose $d(u)=3$ and $S_{G}(u) \geq \Delta+6$. If $S_{G}(v) \leq \Delta+5$, then v receives $\frac{1}{3}$ from u. Otherwise, v receives nothing from u.
(3) If $4 \leq d(u) \leq 5$, then v receives $\frac{1}{3}$ from u.
(4) If $6 \leq d(u) \leq 7$ and v is adjacent to a bad 3-vertex, then v receives $\frac{2}{3}$ from u. Otherwise, v receives $\frac{1}{2}$ from u except v is a $3(1)$-vertex.
R3. Each $4(2)$-vertex receives 1 from each adjacent 6^{+}-vertex. Each 4(1)vertex receives $\frac{1}{6}$ from each adjacent 5^{+}-vertex.
R4. Each 5(3)-vertex receives $\frac{1}{2}$ from each adjacent 5(0)-vertex, $\frac{1}{2}$ from each adjacent 6^{+}-vertex.
Let f be a k-face of $G, k \geq 5$. Obviously, $\omega^{*}(f)=2 k-10 \geq 0$.
Let v be a k-vertex of $G, k \geq 2$. We will check that each vertex has a non-negative charge after the discharging process.

If $k=2$, then $\omega(v)=-4$. By R1, $\omega^{*}(v)=-4+2 \times 2=0$.
If $k=3$, then $\omega(v)=-1$. By Lemma $7(1), n_{2}(v) \leq 1$. If $n_{2}(v)=1$, then $d\left(v_{2}\right)+d\left(v_{3}\right) \geq \Delta+7$ by Lemma $7(2)$, that is, $\Delta=7$ and $d\left(v_{2}\right)=d\left(v_{3}\right)=7$. So $\omega^{*}(v)=-1-2+2 \times \frac{3}{2}=0$ by R1 and R2(1).

Suppose $n_{2}(v)=0$. If $2 \leq n_{3}(v) \leq 3$, it is obviously $S_{G}(v) \leq \Delta+5$. So $S_{G}\left(v_{i}\right) \geq \Delta+6$ for $i=1,2,3$. By R2, v receives at least $\frac{1}{3}$ from v_{i}. So $\omega^{*}(v) \geq-1+3 \times \frac{1}{3}=0$.

Suppose $n_{3}(v)=1$. If $S_{G}(v) \leq \Delta+5$, then $S_{G}\left(v_{1}\right) \geq \Delta+6$ by Lemma 5 . By $\mathrm{R} 2, v$ receives at least $\frac{1}{3}$ from $v_{i}, i=1,2,3$. So $\omega^{*}(v) \geq-1+3 \times \frac{1}{3}=0$. Suppose $S_{G}(v) \geq \Delta+6$. Then $d\left(v_{3}\right) \geq d\left(v_{2}\right) \geq 6$. If $S_{G}\left(v_{1}\right) \leq \Delta+5$, then v sends $\frac{1}{3}$ to v_{1} and receives $\frac{2}{3}$ from each of v_{2} and v_{3}. So $\omega^{*}(v) \geq-1-\frac{1}{3}+2 \times \frac{2}{3}=0$. If $S_{G}\left(v_{1}\right) \geq \Delta+6$, then v receives $\frac{1}{2}$ from each of v_{2} and v_{3}. So $\omega^{*}(v) \geq$ $-1+2 \times \frac{1}{2}=0$.

If $n_{3}(v)=0$, then v receives at least $\frac{1}{3}$ from each adjacent vertex by R2. So $\omega^{*}(v)=-1+3 \times \frac{1}{3}=0$.

If $k=4$, then $\omega(v)=2$. By Lemma $7(1), n_{2}(v) \leq 2$.

If $n_{2}(v)=2$, then the other two adjacent vertices must be 6^{+}-vertices. By R3, $\omega^{*}(v) \geq 2-2 \times 2+2 \times 1=0$.

If $n_{2}(v)=1$, then $n_{3}(v) \leq 1$. (If $n_{3}(v) \geq 2$, then $S_{G}(v)<\Delta+6, S_{G}\left(v_{1}\right)<$ $\Delta+6$, a contradiction to Lemma 5.) If $n_{3}(v)=1$, then v_{3}, v_{4} are 5^{+}-vertices by Lemma 5 . So $\omega^{*}(v) \geq 2-2-\frac{1}{3}+2 \times \frac{1}{6}=0$ by R3. If $n_{3}(v)=0$, then $\omega^{*}(v) \geq 2-2=0$.

If $n_{2}(v)=0$, then $\omega^{*}(v) \geq 2-4 \times \frac{1}{3}>0$.
If $k=5$, then $\omega(v)=5$. By Lemma $7(1), n_{2}(v) \leq 3$. Suppose $n_{2}(v)=3$. By Lemma $7(2)$, the other two adjacent vertices must be 5^{+}-vertices, and the 5 -vertex adjacent to v must be a $5(0)$-vertex by Claim 1(1). It follows that $\omega^{*}(v) \geq 5-3 \times 2+2 \times \frac{1}{2}=0$ by R4. If $n_{2}(v)=2$, then $n_{3}(v) \leq 1$ by Lemma 5. Hence, $\omega^{*}(v) \geq 5-2 \times 2-1 \times \frac{1}{3}-2 \times \frac{1}{6}>0$ by R1, R2, R3 and R4. If $n_{2}(v)=1$, then $\omega^{*}(v) \geq 5-1 \times 2-4 \times \frac{1}{3}>0$. If $n_{2}(v)=0$, then v sends at most $\frac{1}{2}$ to its neighbors by R2, R3 and R4. So $\omega^{*}(v) \geq 5-5 \times \frac{1}{2}>0$.

If $k=6$, then $\Delta \geq 6$ and $\omega(v)=8$. By Lemma $7(1), n_{2}(v) \leq 4$. If $n_{2}(v)=4$, then $d\left(v_{5}\right)+d\left(v_{6}\right) \geq \Delta+4$ by Lemma $7(2)$. So $\min \left\{d\left(v_{5}\right), d\left(v_{6}\right)\right\} \geq 4$. By Claim 1(2) and Claim 1(3), v_{5}, v_{6} are not 4(1)-vertices, 4(2)-vertices, 5(3)vertices. By R3, R4, v sends nothing to v_{5}, v_{6}. So $\omega^{*}(v) \geq 8-2 \times 4=0$. If $n_{2}(v)=3$, by Lemma $7(2), d\left(v_{4}\right)+d\left(v_{5}\right)+d\left(v_{6}\right) \geq \Delta+6 \geq 12$. So the degree sequence of v_{4}, v_{5}, v_{6} is $\left(3,3,6^{+}\right)$, or $\left(3,4,5^{+}\right)$(the 5 -vertex is not a $5(3)$-vertex by Claim $1(5))$, or $\left(3,5^{+}, 5^{+}\right)$, or $\left(4,4^{+}, 4^{+}\right)$(there exists at most one $4(2)$-vertex by Claim 1(4)), or ($\left.5^{+}, 5^{+}, 5^{+}\right)$. By R2, R3 and R4, v sends at most $\max \left\{2 \times \frac{2}{3}, \frac{2}{3}+1, \frac{2}{3}+2 \times \frac{1}{2}, 1+2 \times \frac{1}{2}, 3 \times \frac{1}{2}\right\}=2$ to v_{4}, v_{5} and v_{6} in total. So $\omega *(v) \geq 8-3 \times 2-2=0$. If $0 \leq n_{2}(v) \leq 2$, then $\omega^{*}(v) \geq$ $8-2 n_{2}(v)-1 \times\left(k-n_{2}(v)\right) \geq 0$.

If $k=7$, then $\Delta=7$ and $\omega(v)=11$. By Lemma $7(1), n_{2}(v) \leq 5$.
Suppose $n_{2}(v)=5$. By Lemma $7(2), d\left(v_{6}\right)+d\left(v_{7}\right) \geq \Delta+3=10$. So the degree sequence of $\left(v_{6}, v_{7}\right)$ is $(3,7)$, or $\left(4,6^{+}\right)$or $\left(5^{+}, 5^{+}\right)$. By Claim 1(6), a $7(5)$ vertex is not adjacent to a $3(1)$-vertex, and v sends at most $\max \left\{\frac{2}{3}, 1,2 \times \frac{1}{2}\right\}=1$ to v_{6} and v_{7} in total. So $\omega^{*}(v) \geq 11-5 \times 2-1=0$.

Suppose $n_{2}(v)=4$. By Lemma $7(2), d\left(v_{5}\right)+d\left(v_{6}\right)+d\left(v_{7}\right) \geq \Delta+5=12$. So the degree sequence of $\left(v_{5}, v_{6}, v_{7}\right)$ is $\left(3,3,6^{+}\right)$, or $\left(3,4^{+}, 5^{+}\right)$or $\left(4^{+}, 4^{+}, 4^{+}\right)$. Thus v sends at most $\max \left\{\frac{3}{2} \times 2, \frac{3}{2}+1+\frac{1}{2}, 3 \times 1\right\}=3$ to v_{5}, v_{6} and v_{7} in total. So $\omega^{*}(v) \geq 11-4 \times 2-3=0$.

Suppose $n_{2}(v)=3$. Then $d\left(v_{4}\right)+d\left(v_{5}\right)+d\left(v_{6}\right)+d\left(v_{7}\right) \geq \Delta+7=14$ by Lemma $7(2)$. So $n_{3}(v) \leq 3$. If $n_{3}(v)=3$, then $d\left(v_{7}\right) \geq 5$. So $\omega^{*}(v) \geq$ $11-3 \times 2-3 \times \frac{3}{2}-\frac{1}{2}=0$. If $n_{3}(v) \leq 2$, then $\omega^{*}(v) \geq 11-3 \times 2-2 \times \frac{3}{2}-2 \times 1=0$.

Suppose $n_{2}(v)=2$. It is easy to check $n_{3}(v) \leq 4$. So $\omega^{*}(v) \geq 11-2 \times 2-$ $4 \times \frac{3}{2}-1=0$ by the discharging rules.

Suppose $n_{2}(v) \leq 1$. Then v sends 2 to each 2-neighbor and at most $\frac{3}{2}$ to each other neighbor. So $\omega^{*}(v) \geq 11-2 \times 1-6 \times \frac{3}{2}=0$.

We have checked $\omega^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$, a contradiction occurs because $0 \leq \sum_{x \in V \cup F} \omega^{*}(x)=\sum_{x \in V \cup F} \omega(x)=-20$.

This completes the proof when $\Delta \leq 7$ and hence that of the whole Theorem 3.

Acknowledgment. The author thanks the anonymous reviewers for their useful comments.

References

[1] O. V. Borodin and A. O. Ivanova, List injective colorings of planar graphs, Discrete Math. 311 (2011), no. 2-3, 154-165. https://doi.org/10.1016/j.disc.2010.10.008
[2] Y. H. Bu, D. Chen, A. Raspaud, and W. Wang, Injective coloring of planar graphs, Discrete Appl. Math. 157 (2009), no. 4, 663-672. https://doi.org/10.1016/j.dam. 2008.08.016
[3] Y. H. Bu and C. Huang, List injective coloring of a class of planar graphs without short cycles, Discrete Math. Algorithms Appl. 10 (2018), no. 5, 1850068, 12 pp. https: //doi.org/10.1142/S1793830918500684
[4] Y. H. Bu and K. Lu, Injective coloring of planar graphs with girth 7, Discrete Math. Algorithms Appl. 4 (2012), no. 2, 1250034, 8 pp. https://doi.org/10.1142/ S1793830912500346
[5] Y. H. Bu and K. Lu, List injective coloring of planar graphs with girth 5, 6, 8, Discrete Appl. Math. 161 (2013), no. 10-11, 1367-1377. https://doi.org/10.1016/j.dam. 2012. 12.017
[6] Y. H. Bu, C. Wang, and S. Yang, List injective coloring of planar graphs, Ars Combin. 141 (2018), 191-211.
[7] Y. H. Bu and S. Yang, List injective coloring of planar graphs with girth $g \geq 5$, Discrete Math. Algorithms Appl. 6 (2014), no. 1, 1450006, 12 pp. https://doi.org/10.1142/ S1793830914500062
[8] H. Y. Chen and J. L. Wu, List injective coloring of planar graphs with girth $g \geq 6$, Discrete Math. 339 (2016), no. 12, 3043-3051. https://doi.org/10.1016/j.disc. 2016. 06.017
[9] D. W. Cranston, S.-J. Kim, and G. Yu, Injective colorings of sparse graphs, Discrete Math. 310 (2010), no. 21, 2965-2973. https://doi.org/10.1016/j.disc.2010.07.003
[10] D. W. Cranston, S.-J. Kim, and G. Yu, Injective colorings of graphs with low average degree, Algorithmica 60 (2011), no. 3, 553-568. https://doi.org/10.1007/s00453-010-9425-x
[11] D. Dimitrov, B. Lužar, and R.Škrekovski, Injective coloring of planar graphs with $\Delta+2$ colors, preprint.
[12] W. Dong and W. Lin, Injective coloring of planar graphs with girth 6, Discrete Math. 313 (2013), no. 12, 1302-1311. https://doi.org/10.1016/j.disc.2013.02.014
[13] W. Dong and W. Lin, Injective coloring of plane graphs with girth 5, Discrete Math. 315 (2014), 120-127. https://doi.org/10.1016/j.disc.2013.10.017
[14] A. Doyon, G. Hahn, and A. Raspaud, Some bounds on the injective chromatic number of graphs, Discrete Math. 310 (2010), no. 3, 585-590. https://doi.org/10.1016/j.disc. 2009.04.020
[15] G. Hahn, J. Kratochvíl, J. Širáň, and D. Sotteau, On the injective chromatic number of graphs, Discrete Math. 256 (2002), no. 1-2, 179-192. https://doi.org/10.1016/S0012365X (01) 00466-6
[16] R. Li and B. G. Xu, Injective choosability of planar graphs of girth five and six, Discrete Math. 312 (2012), no. 6, 1260-1265. https://doi.org/10.1016/j.disc.2011.10.029
[17] B. Lužar, Planar graphs with largest injective chromatic numbers, in: IMFM Preprint Series, 48, 2010, p. 1110.
[18] B. Lužar, R. Škrekovski, and M. Tancer, Injective colorings of planar graphs with few colors, Discrete Math. 309 (2009), no. 18, 5636-5649. https://doi.org/10.1016/j. disc.2008.04.005
[19] G. Wegner, Graphs with Given Diameter and a Coloring Problem, Technical Report, University of Dortmund, Germany, 1977.

Hongyu Chen
School of Science
Shanghai Institute of Technology
Shanghai, 201418, P. R. China
Email address: hongyuchen86@163.com

[^0]: Received February 20, 2023; Revised June 8, 2023; Accepted November 28, 2023.
 2020 Mathematics Subject Classification. 05C15.
 Key words and phrases. Planar graph, list injective coloring, girth.

