Topological Properties of Recursive Circulants : Disjoint Cycles and Graph Invariants

재귀원형군의 위상 특성 : 서로소인 사이클과 그래프 invariant

  • 박정흠 (가톨릭대학교 컴퓨터공학부) ;
  • 좌경룡 (한국과학기술원 전산학과)
  • Published : 1999.08.01

Abstract

이 논문은 재귀원형군 G(2^m , 2^k )를 그래프 이론적 관점에서 고찰하고 정점이 서로소인 사이클과 그래프 invariant에 관한 위상 특성을 제시한다. 재귀원형군은 1 에서 제안된 다중 컴퓨터의 연결망 구조이다. 재귀원형군 {{{{G(2^m , 2^k )가 길이 사이클을 가질 필요 충분 조건을 구하고, 이 조건하에서 G(2^m , 2^k )는 가능한 최대 개수의 정점이 서로소이고 길이가l`인 사이클을 가짐을 보인다. 그리고 정점 및 에지 채색, 최대 클릭, 독립 집합 및 정점 커버에 대한 그래프 invariant를 분석한다.Abstract In this paper, we investigate recursive circulant G(2^m , 2^k ) from the graph theory point of view and present topological properties of G(2^m , 2^k ) concerned with vertex-disjoint cycles and graph invariants. Recursive circulant is an interconnection structure for multicomputer networks proposed in 1 . A necessary and sufficient condition for recursive circulant {{{{G(2^m , 2^k ) to have a cycle of lengthl` is derived. Under the condition, we show that G(2^m , 2^k ) has the maximum possible number of vertex-disjoint cycles of length l`. We analyze graph invariants on vertex and edge coloring, maximum clique, independent set and vertex cover.

Keywords