• Title/Summary/Keyword: variational systems

Search Result 124, Processing Time 0.023 seconds

MULTIPLICITY OF SOLUTIONS FOR A CLASS OF NON-LOCAL ELLIPTIC OPERATORS SYSTEMS

  • Bai, Chuanzhi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.715-729
    • /
    • 2017
  • In this paper, we investigate the existence and multiplicity of solutions for systems driven by two non-local integrodifferential operators with homogeneous Dirichlet boundary conditions. The main tools are the Saddle point theorem, Ekeland's variational principle and the Mountain pass theorem.

LYAPUNOV FUNCTIONS FOR NONLINEAR DIFFERENCE EQUATIONS

  • Choi, Sung Kyu;Cui, Yinhua;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.883-893
    • /
    • 2011
  • In this paper we study h-stability of the solutions of nonlinear difference system via the notion of $n_{\infty}$-summable similarity between its variational systems. Also, we show that two concepts of h-stability and h-stability in variation for nonlinear difference systems are equivalent. Furthermore, we characterize h-stability for nonlinear difference systems by using Lyapunov functions.

ON A CLASS OF SEMILINEAR ELLIPTIC SYSTEMS INVOLVING GRUSHIN TYPE OPERATOR

  • Nguyen, Thanh Chung
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.37-50
    • /
    • 2014
  • Using variational methods, we prove some results on the nonexistence and multiplicity of weak solutions for a class of semilinear elliptic systems of two equations involving Grushin type operators with sign-changing nonlinearities. We also shows that the similar results can be obtained for systems of m equations, where m is arbitrary.

ON ASYMPTOTIC PROPERTY IN VARIATION FOR NONLINEAR DIFFERENTIAL SYSTEMS

  • Choi, Sung Kyu;Im, Dong Man;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.545-556
    • /
    • 2009
  • We show that two notions of asymptotic equilibrium and asymptotic equilibrium in variation for nonlinear differential systems are equivalent via $t_{\infty}$-similarity of associated variational systems. Moreover, we study the asymptotic equivalence between nonlinear system and its variational system.

  • PDF

ON STABILITY OF NONLINEAR INTEGRO-DIFFERENTIAL SYSTEMS WITH IMPULSIVE EFFECT

  • Kang, Bowon;Koo, Namjip;Lee, Hyunhee
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.879-890
    • /
    • 2020
  • In this paper we study the stability properties of solutions of nonlinear impulsive integro-differential systems by using an integral inequality under the stability of the corresponding variational impulsive integro-differential systems. Also, we give examples to illustrate our results.

THREE NONTRIVIAL NONNEGATIVE SOLUTIONS FOR SOME CRITICAL p-LAPLACIAN SYSTEMS WITH LOWER-ORDER NEGATIVE PERTURBATIONS

  • Chu, Chang-Mu;Lei, Chun-Yu;Sun, Jiao-Jiao;Suo, Hong-Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.125-144
    • /
    • 2017
  • Three nontrivial nonnegative solutions for some critical quasilinear elliptic systems with lower-order negative perturbations are obtained by using the Ekeland's variational principle and the mountain pass theorem.

Nonlinear vibration of multi-body systems with linear and nonlinear springs

  • Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.497-503
    • /
    • 2017
  • In this paper, nonlinear vibration of multi-degree of freedom systems are studied. It has been tried to develop the mathematical model of systems by second-order nonlinear partial differential equations. The masses are connected with linear and nonlinear springs in series. A great effort has been done to solve the nonlinear governing equations analytically. A new analytical method called Variational Iteration Method (VIM) is proposed and successfully applied to the problem. The linear and nonlinear frequencies are obtained and the results are compared with numerical solutions. The first order of Variational Iteration Method (VIM) leads us to high accurate solution.

INFINITELY MANY SOLUTIONS FOR (p(x), q(x))-LAPLACIAN-LIKE SYSTEMS

  • Heidari, Samira;Razani, Abdolrahman
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.51-62
    • /
    • 2021
  • Variational method has played an important role in solving problems of uniqueness and existence of the nonlinear works as well as analysis. It will also be extremely useful for researchers in all branches of natural sciences and engineers working with non-linear equations economy, optimization, game theory and medicine. Recently, the existence of infinitely many weak solutions for some non-local problems of Kirchhoff type with Dirichlet boundary condition are studied [14]. Here, a suitable method is presented to treat the elliptic partial derivative equations, especially (p(x), q(x))-Laplacian-like systems. This kind of equations are used in the study of fluid flow, diffusive transport akin to diffusion, rheology, probability, electrical networks, etc. Here, the existence of infinitely many weak solutions for some boundary value problems involving the (p(x), q(x))-Laplacian-like operators is proved. The method is based on variational methods and critical point theory.

GENERALIZED SYSTEMS OF RELAXED $g-{\gamma}-r-COCOERCIVE$ NONLINEAR VARIATIONAL INEQUALITIES AND PROJECTION METHODS

  • Verma, Ram U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.83-94
    • /
    • 2003
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Approximation solvability of a system of nonlinear variational inequality (SNVI) problems, based on the convergence of projection methods, is given as follows: find elements $x^*,\;y^*{\in}H$ such that $g(x^*),\;g(y^*){\in}K$ and $$<\;{\rho}T(y^*)+g(x^*)-g(y^*),\;g(x)-g(x^*)\;{\geq}\;0\;{\forall}\;g(x){\in}K\;and\;for\;{\rho}>0$$ $$<\;{\eta}T(x^*)+g(y^*)-g(x^*),\;g(x)-g(y^*)\;{\geq}\;0\;{\forall}g(x){\in}K\;and\;for\;{\eta}>0,$$ where T: $H\;{\rightarrow}\;H$ is a relaxed $g-{\gamma}-r-cocoercive$ and $g-{\mu}-Lipschitz$ continuous nonlinear mapping on H and g: $H{\rightarrow}\;H$ is any mapping on H. In recent years general variational inequalities and their algorithmic have assumed a central role in the theory of variational methods. This two-step system for nonlinear variational inequalities offers a great promise and more new challenges to the existing theory of general variational inequalities in terms of applications to problems arising from other closely related fields, such as complementarity problems, control and optimizations, and mathematical programming.

  • PDF

A Variational Framework for Single Image Dehazing Based on Restoration

  • Nan, Dong;Bi, Du-Yan;He, Lin-Yuan;Ma, Shi-Ping;Fan, Zun-Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1182-1194
    • /
    • 2016
  • The single image dehazing algorithm in existence can satisfy the demand only for improving either the effectiveness or efficiency. In order to solve the problem, a novel variational framework for single image dehazing based on restoration is proposed. Firstly, the initial atmospheric scattering model is transformed to meet the kimmel's Retinex variational model. Then, the green light component of image is considered as an input of the variational framework, which is generated by the sensitivity of green wavelength. Finally, the atmospheric transmission map is achieved by multi-resolution pyramid reduction to improve the visual effect of the results. Experimental results demonstrate that the proposed method can remove haze effectively with less memory consumption.