DOI QR코드

DOI QR Code

LYAPUNOV FUNCTIONS FOR NONLINEAR DIFFERENCE EQUATIONS

  • Choi, Sung Kyu (Department of Mathematics Chungnam National University) ;
  • Cui, Yinhua (Department of Applied Mathematics Paichai University) ;
  • Koo, Namjip (Department of Mathematics Chungnam National University)
  • Received : 2011.10.15
  • Accepted : 2011.11.18
  • Published : 2011.12.30

Abstract

In this paper we study h-stability of the solutions of nonlinear difference system via the notion of $n_{\infty}$-summable similarity between its variational systems. Also, we show that two concepts of h-stability and h-stability in variation for nonlinear difference systems are equivalent. Furthermore, we characterize h-stability for nonlinear difference systems by using Lyapunov functions.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. R. P. Agarwal, Difference Equations and Inequalities, 2nd ed., Marcel Dekker, New York, 2000.
  2. S. K. Choi, N. J. Koo, and H. S. Ryu, h-stability of differential systems via $t_{\infty}$-similarity, Bull. Korean Math. Soc. 34 (1997), 371-383.
  3. S. K. Choi and N. J. Koo, Variationally stable difference systems by $n_{\infty}$- similarity, J. Math. Anal. Appl. 249 (2000), 553-568. https://doi.org/10.1006/jmaa.2000.6910
  4. S. K. Choi, N. J. Koo, and Y. H. Goo, Variationally stable difference systems, J. Math. Anal. Appl. 256 (2001), 587-605. https://doi.org/10.1006/jmaa.2000.7330
  5. S. K. Choi, N. J. Koo, and S. M. Song, h-stability for nonlinear perturbed difference systems, Bull. Korean Math. Soc. 41 (2004), 435-450.
  6. S. K. Choi, Y. H. Goo, and N. J. Koo, Variationally asymptotically stable difference systems, Adv. Difference Equ. 2007, Article ID 35378, 21 pages.
  7. S. K. Choi, W. Kang, N. Koo, and H. M. Lee, On h-stability of linear difference systems via $n_{\infty}$-quasisimilarity, J. Chungcheong Math. Soc. 21 (2008), no. 2, 189-196.
  8. S. K. Choi, W. Kang, and N. Koo, On h-stability of linear dynamic equations on time scales via $u_{\infty}$-similarity, J. Chungcheong Math. Soc. 21 (2008), no. 3, 395-401.
  9. S. K. Choi and N. Koo, On the stability of linear dynamic systems on time scales, J. Difference Equ. Appl. 15 (2009), no. 2, 167-183. https://doi.org/10.1080/10236190802008528
  10. R. Conti, Sulla $u_{\infty}$-similitudine tra matrici e la stabilitµa dei sistemi differenziali lineari, Atti. Acc. Naz. Lincei, Rend. Cl. Fis. Mat. Nat. 49 (1955), 247-250.
  11. V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, 2nd ed., Marcel Dekker, New York, 2002.
  12. R. Medina, Asymptotic behavior of nonlinear difference systems, J. Math. Anal. Appl. 219 (1998), 294-311. https://doi.org/10.1006/jmaa.1997.5798
  13. R. Medina, Stability results for nonlinear difference equations, Nonlinear Stud. 6 (1999), 73-83.
  14. R. Medina, Stability of nonlinear difference systems, Dynam. Systems Appl. 9 (2000), 1-14.
  15. R. Medina and M. Pinto, Stability of nonlinear difference equations, Proc. Dynamic Systems and Appl. 2 (1996), 397-404.
  16. R. Medina and M. Pinto, Variationally stable difference equations, Nonlinear Anal. 30 (1997), no. 2, 1141-1152. https://doi.org/10.1016/S0362-546X(96)00111-3
  17. M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), 161-175.
  18. W. F. Trench, Linear asymptotic equilibrium and uniform, exponential, and strict stability of linear difference systems, Comput. Math. Appl. 36 (1998), no.(10-12), 261-267. https://doi.org/10.1016/S0898-1221(98)80027-8