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ON ASYMPTOTIC PROPERTY IN VARIATION FOR
NONLINEAR DIFFERENTIAL SYSTEMS

Sung Kyu Choi*, Dong Man Im**, and Namjip Koo***

Abstract. We show that two notions of asymptotic equilibrium
and asymptotic equilibrium in variation for nonlinear differential
systems are equivalent via t∞-similarity of associated variational
systems. Moreover, we study the asymptotic equivalence between
nonlinear system and its variational system.

1. Introduction and basic notions

The aim of this paper is to study asymptotic properties - asymptotic
equilibrium and asymptotic equivalence - of the nonlinear differential
system and its variational system. To do this, we need the concepts of
strong stability and t∞-similarity due to G. Ascoli [1] and R. Conti [8],
respectively.

Consider the nonlinear differential system

(1.1) x′(t) = f(t, x(t)), x(t0) = x0,

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞), and Rn is the n-dimensional
real Euclidean space. We assume that the Jacobian matrix fx = ∂f

∂x
exists and is continuous on R+ × Rn and f(t, 0) = 0. The symbol | · |
denotes arbitrary vector norm on Rn.

Let x(t) = x(t, t0, x0) be the unique solution of (1.1) satisfying x(t0) =
x0. Also, we consider the associated variational systems

(1.2) v′(t) = fx(t, 0)v(t), v(t0) = v0,
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and

(1.3) z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.

The fundamental matrix solutions Φ(t, t0, 0) of (1.2) and Φ(t, t0, x0) of
(1.3) are given by

Φ(t, t0, 0) =
∂

∂x0
x(t, t0, 0)

and

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

respectively [12].
System (1.1) is strongly stable [1, 9] if for each ε > 0 there exists a

corresponding δ = δ(ε) > 0 such that any solution x(t) of (1.1) which
satisfies the inequality |x(t1, t0, x0)| < δ for some t1 ≥ t0 exists and
satisfies the inequality |x(t, t0, x0)| < ε for all t ≥ t0.

It is clear that strong stability implies uniform stability, which in turn
implies ordinary stability. The linear differential system

(1.4) x′(t) = A(t)x(t),

where A(t) is an n × n continuous matrix on R+, is strongly stable if
and only if there exists a constant M > 0 such that

|X(t)| ≤ M, |X−1(t)| ≤ M for all t ≥ t0,

where X(t) is a fundamental matrix of (1.4) [9, Theorem 1, p. 54].
Let A(t) and B(t) be n × n continuous matrices on R+. They are

t∞-similar [8] if there exists an n× n continuous matrix F (t) with∫ ∞

0
|F (t)|dt < ∞

and continuously differentiable matrix S(t) such that

(1.5) S′(t) + S(t)B(t)−A(t)S(t) = F (t),

where S(t) is bounded and invertible with bounded S−1(t).
The notion of t∞-similarity is an equivalence relation in the set of all

n×n continuous matrices on R+, and it preserves some stability concepts
[8, 10]. Trench [14] introduced the concept of t∞-quasisimilarity which
is not symmetric or transitive, but still preserves stability properties.

Hewer [10] and Choi et al. [4, 5] studied the stability in variation for
nonlinear differential systems using the notion of t∞-similarity. For sta-
bility in variation of difference systems using the notion of n∞-similarity,
which is the corresponding notion of t∞-similarity for the discrete case,
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see [3]. Also, Choi and Koo [6] studied the asymptotic property for
linear integro-differential systems.

This paper deals with the asymptotic equilibrium for nonlinear differ-
ential systems in section 2. We show that two notions of asymptotic equi-
librium and asymptotic equilibrium in variation for nonlinear systems
are equivalent via the notion of t∞-similarity of associated variational
systems in section 3. Moreover, we study the asymptotic equivalence
between nonlinear system and its variational system in section 3.

2. Asymptotic equilibria for nonlinear systems

System (1.1) has asymptotic equilibrium [11] if every solution of (1.1)
tends to a finite limit vector ξ ∈ Rn as t → ∞ and to every constant
vector η ∈ Rn there is a solution x(t) of (1.1) such that limt→∞ x(t) = η.

Also, System (1.1) has asymptotic equilibrium in variation if for every
solution of (1.1) the corresponding variational system (1.3) has asymp-
totic equilibrium.

Firstly, we show that the associated variational differential system
(1.2) inherits the property of asymptotic equilibrium from the original
nonlinear differential system (1.1) in the following theorem. To show
this we need the following lemma.

Lemma 2.1. [4, Theorem 3.2] Linear system (1.4) has asymptotic
equilibrium if and only if limt→∞X(t) exists and is invertible, where
X(t) is a fundamental matrix of (1.4).

Theorem 2.2. If (1.1) has asymptotic equilibrium, then (1.2) also
has asymptotic equilibrium.

Proof. We begin by showing that the fundamental matrix Φ(t, t0, 0)
of (1.2) given by ∂

∂x0
x(t, t0, 0) is convergent as t → ∞. Let x0(h) ≡

(0, · · · , h, · · · , 0) be a vector of small length |h| in the j-th coordinate
direction for each j = 1, · · · , n. Since (1.1) has asymptotic equilibrium,
limt→∞ x(t, t0, x0(h)) = x∞ exists for fixed nonzero h. Let ε > 0 be
given. For any given 0 < |h| < ε, there exists a positive large number
N = N(t0, x0(h)) such that |x(t, t0, x0(h))−x(s, t0, x0(h))| < |h|2 for any
t, s ≥ N and j = 1, · · · , n, since x(t, t0, x0(h)) has the Cauchy property
for given (t0, x0(h)) and for each j = 1, · · · , n. Then we obtain for each
j = 1, · · · , n,

| ∂

∂x0j
x(t, t0, 0)− ∂

∂x0j
x(s, t0, 0)|
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= | lim
h→0

x(t, t0, x0(h))− x(t, t0, 0)
h

− lim
h→0

x(s, t0, x0(h))− x(s, t0, 0)
h

|

= | lim
h→0

x(t, t0, x0(h))− x(s, t0, x0(h))
h

| < lim
h→0

|h|2
|h| < ε, for t, s ≥ N.

This implies that limt→∞Φ(t, t0, 0) = Φ∞ exists.
Note that the fact that fx exists and is continuous on R+×Rn assures

the existence and continuity of x(t, t0, x0) and Φ(t, t0, x0) = ∂x(t,t0,x0)
∂x0

,
respectively [7, Theorem 7.2, p. 25 ]. Furthermore, the change of limits
of Φ(t, t0, x0) holds:

lim
t→∞ lim

h→0

xj(t, t0, x0j(h))− xj(t, t0, 0)
h

= lim
h→0

limt→∞ xj(t, t0, x0j(h))
h

, j = 1, · · · , n.

Now, by using Lemma 2.1, it suffices to prove that the limit Φ∞
is invertible. Given linearly independent vectors x̂0j ∈ Rn in the j-
coordinate direction for each j = 1, · · · , n, it follows from asymptotic
equilibrium of (1.1) that there exist the solutions xj(t, t0, x0j(h)) of (1.1)
which are convergent to hx̂0j for each j = 1, · · · , n and fixed h 6= 0. Then
we have

lim
t→∞Φ(t, t0, 0)

= lim
t→∞[

∂

∂x01
x1(t, t0, x01(h)), · · · ,

∂

∂x0n
xn(t, t0, x0n(h))]

= lim
t→∞[ lim

h→0

x1(t, t0, x01(h))
h

, · · · , lim
h→0

xn(t, t0, x0n(h))
h

]

= [ lim
h→0

limt→∞ x1(t, t0, x01(h))
h

, · · · , lim
h→0

limt→∞ xn(t, t0, x0n(h))
h

]

= [x̂01, · · · , x̂0n] = Φ∞.

Since the vectors x̂01, · · · , x̂0n are linearly independent, Φ∞ is invertible.
This completes the proof.

Note that the converse of Theorem 2.2 does not hold in general.

Example 2.3. If we consider the nonlinear scalar differential equation

x′(t) = f(t, x(t)) =
etx2(t)

1 + x2(t)
, x(t0) = x0,(2.1)

then its variational equation has a constant fundamental solution and
equation (2.1) has an unbounded solution.
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Now, for the converse of Theorem 2.2, we examine asymptotic equilib-
rium for the perturbed system of linear differential system (1.2) by using
the comparison principle. To do this we need the following comparison
principle in [11].

Lemma 2.4. Suppose that w(t, r) ∈ C(R+ × R+,R+) is monotone
nondecreasing in r for each fixed t ≥ t0 ≥ 0 with the property that

u(t)−
∫ t

t0

w(s, u(s))ds < v(t)−
∫ t

t0

w(s, v(s))ds, t ≥ t0 ≥ 0

for u, v ∈ C(R+,R+). If u(t0) < v(t0), then u(t) < v(t) for all t ≥ t0 ≥ 0.

Setting fx(t, 0) = A(t) and using the mean value theorem, the non-
linear differential system (1.1) can be written as

x′(t) = A(t)x(t) + G(t, x(t)), x(t0) = x0,(2.2)

where G(t, x) = f(t, x(t))− fx(t, 0)x(t) =
∫ 1
0 [fx(t, θx)− fx(t, 0)]dθx.

Lemma 2.5. Assume that
(i) (1.2) is strongly stable,
(ii) for each t ≥ t0 and x ∈ Rn, G(t, x) in (2.2) satisfies

|G(t, x)| ≤ g(t, |x|),
where g(t, u) ∈ C(R+ × R+,R+) is nondecreasing in u for t ≥ t0 ≥ 0.

Also, we consider the scalar differential equation

u′(t) = Mg(t, u(t)), u(t0) = u0 > 0,(2.3)

and suppose that
(iii) all solutions of (2.3) are bounded on R+.
Then all solutions of the scalar equation

r′(t) = ω(t, r(t))

= |fx(t, 0)|r(t) + Mg(t, r(t)), r(t0) = r0 > 0,
(2.4)

are bounded provided Mr0 < u0 with r0 = |x0|.
Proof. By using the variation of constants formula, the solution x(t)

of (1.1) satisfies the following inequality

r(t, t0, |x0|) = |x(t, t0, x0)|

= |Ψ(t, t0)x0 +
∫ t

t0

Ψ(t, s)G(s, x(s))ds|

≤ Mr0 + M

∫ t

t0

g(s, r(s))ds,
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where Ψ(t, t0) = Φ(t, t0, 0) is a fundamental matrix of (1.2). This implies
that

r(t, t0, r0) − M

∫ t

t0

g(s, r(s))ds

≤ Mr0 < u0

= u(t)−M

∫ t

t0

g(s, u(s))ds.

Then, by using Lemma 2.4, we obtain

r(t) < u(t) for each t ≥ t0,

provided Mr0 < u0.

We obtain the following result by using Theorems 9.1 and 9.6 in [2].

Theorem 2.6. Assume that

(i) (1.2) has asymptotic equilibrium,

(ii) for each t ≥ t0 and x ∈ Rn, G(t, x) in (2.2) satisfies

|G(t, x)| ≤ g(t, |x|),
where g(t, u) ∈ C(R+ × R+,R+) is nondecreasing in u for t ≥ t0 ≥ 0.

Also, we consider the scalar differential equation

u′(t) = Mg(t, u(t)), u(t0) = u0 > 0,(2.3)

and suppose that

(iii) all solutions of (2.3) are bounded on R+.

Then (1.1) has asymptotic equilibrium provided M |x0| < u0.

Proof. Let x(t, t0, x0) be any solution of (1.1). From the variation of
constants formula in [12] and conditions (i) and (ii), we obtain

|x(t)| = |Ψ(t, t0)x0 +
∫ t

t0

Ψ(t, s)G(s, x(s))ds|

≤ |Ψ(t, t0)||x0|+
∫ t

t0

|Ψ(t, s)||G(s, x(s))|ds

≤ M |x0|+ M

∫ t

t0

g(s, |x(s)|)ds,
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where M is a constant from the boundedness of Ψ(t, s) for each t, s ≥ t0.
Then we have the following integral inequality:

|x(t)| − M

∫ t

t0

g(s, |x(s)|)ds

≤ |x0| < u0

= u(t)−M

∫ t

t0

g(s, u(s))ds.

By letting w(t, r) = Mg(t, r) and using Lemma 2.4, we obtain

|x(t)| ≤ u(t) for each t ≥ t0,

provided M |x0| < u0.
Now, we prove that the solution x(t) of (2.2) converges to a vector as

t →∞. Consider the integral function

p(t, t0, x0) =
∫ t

t0

Ψ−1(s, t0)G(s, x(s, t0, x0))ds.(2.5)

From the monotonicity of the function g and asymptotic equilibrium of
(1.2), we obtain

|p(t)− p(s)| ≤
∫ t

s
|Ψ−1(τ, t0)||G(τ, x(τ))|dτ

≤ M

∫ t

s
g(τ, |x(τ)|)dτ

≤ M

∫ t

s
g(τ, u(τ))dτ = u(t)− u(s),

for any t ≥ s ≥ t0. Since u(t) has the Cauchy property, p(t) converges
to a vector p∞ as t →∞. Hence there exists a vector ξ ∈ Rn such that
any solution x(t, t0, x0) of (2.2) satisfies the asymptotic relationship

x(t) = ξ + o(1) as t →∞,

where ξ = Ψ∞[x0 + p∞].
Conversely, let η ∈ Rn be any vector. We note that for each (t0, λ) ∈

R+ × R+, we have

(2.6)
∫ ∞

t0

ω(s, λ)ds < ∞,

by the boundedness of the solution r(t) of (2.4) in Lemma 2.5. Let r(t,
t0, |η|) be the maximal solution of (2.4) such that R = limt→∞ r(t, t0, |η|)
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exists. By (2.6) with λ = 2R we can choose t0 ≥ 0 so large that

(2.7)
∫ ∞

t0

ω(s, 2R)ds < R.

We define the operator S on Ω by

Sx(t) = η −
∫ ∞

t
f(s, x(s))ds,

where Ω is the set of all bounded continuous functions x : [t0,∞) → Rn

with the norm ||x|| = supt≥t0 |x(t)| ≤ 2R. We note that Ω is closed,
bounded, and convex. In view of the continuity of f and (2.6), we easily
see that S is continuous. Moreover S(Ω) ⊂ Ω, since

|Sx(t)| ≤ |η|+
∫ ∞

t
|f(s, x(s))|ds

≤ R +
∫ ∞

t
[|fx(s, 0)||x(s)|+ Mg(s, |x(s)|)] ds

≤ R +
∫ ∞

t0

ω(s, 2R)ds < 2R.

This inequality also shows that the set F = {Sx(t) : x ∈ Ω} is uni-
formly bounded and equicontinuous on any interval [t0, T ], and that
limt→∞ Sx(t) = η uniformly in x ∈ Ω, i.e., F is compact. Consequently
Schauder’s fixed point theorem [9] implies that S has a fixed point x ∈ Ω,
i.e., there is a solution x(t) of (1.1) such that

x(t) = η −
∫ ∞

t
f(s, x(s))ds = η + o(1) as t →∞,(2.8)

since
∫∞
t f(s, x(s))ds → 0 as t →∞. This completes the proof.

As a consequence of Theorem 2.6 we obtain the following.

Corollary 2.7. Instead of the condition (i) of Theorem 2.6 we as-
sume that

∫∞
t0
|fx(s, 0)|ds is finite. Then (1.1) has asymptotic equilib-

rium.

3. Asymptotic equivalence in variation

In view of Theorem 2.2 and the following theorem, we obtain two
corollaries about asymptotic equilibria in variation for the nonlinear sys-
tem (1.1).
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Theorem 3.1. [4] Asymptotic equilibrium for linear systems is pre-
served by t∞-similarity.

Corollary 3.2. Assume that (1.1) has asymptotic equilibrium and
fx(t, 0) and fx(t, x(t, t0, x0)) are t∞-similar with limt→∞ S(t) = S∞ for
t ≥ t0 ≥ 0 and |x0| ≤ δ for some δ > 0. Then (1.1) has asymptotic
equilibrium in variation.

Corollary 3.3. Assume that (1.1) has asymptotic equilibrium and
for some δ > 0 we have∫ ∞

t0

|fx(t, 0)− fx(t, x(t, t0, x0))|dt < ∞,

for |x0| ≤ δ. Then (1.1) has asymptotic equilibrium in variation.

Proof. It follows from Theorem 2.2 that (1.2) has asymptotic equi-
librium. Letting F (t) = |fx(t, 0) − fx(t, x(t, t0, x0))| with S(t) = I for
each t ≥ t0 ≥ 0, we obtain that F (t) is absolutely integrable. Thus
fx(t, x(t, t0, x0)) and fx(t, 0) are t∞-similar with limt→∞ S(t) = S∞ = I.
Here I is the identity matrix. This implies that (1.3) has also asymptotic
equilibrium by Theorem 3.1.

Two differential systems x′(t) = f(t, x(t)) and y′(t) = k(t, y(t)) with
k ∈ C(R+×Rn,Rn) are said to be asymptotically equivalent if, for every
solution x(t), there exists a solution y(t) such that

x(t) = y(t) + o(1) as t →∞
and conversely, for every solution y(t), there exists a solution x(t) satis-
fying the asymptotic relationship.

Now, we obtain the result of asymptotic equivalence between the non-
linear system (1.1) and its variational system (1.2) under the hypotheses
of Theorem 2.6.

Theorem 3.4. Let the assumptions be the same as in Theorem 2.6.
Then (1.1) and (1.2) are asymptotically equivalent.

Proof. Let x(t) be any solution of (1.1). Then we have limt→∞ x(t) =
x∞ since (1.1) has asymptotic equilibrium. Setting y0 = Ψ−1∞ x∞ − p∞
as in Theorem 2.6, there exists a solution y(t, t0, y0) of (1.2) such that

lim
t→∞[y(t)− x(t)] = Ψ∞[y0 + p∞]− x∞

= Ψ∞[Ψ−1
∞ x∞ − p∞ + p∞]− x∞ = 0.

For the converse asymptotic relationship, we easily see that the asymp-
totic relationship also holds by setting x0 = y0 + p∞. This completes
the proof.
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Example 3.5. To illustrate Theorem 3.4, we consider the Ricatti
scalar differential equation in [13]

x′ = f(t, x) = λ(t)(−x + x2),

x(t0) = x0, t ≥ t0 ≥ 0, |x0| ≤ 1
2
,

(3.1)

whose general solution is x(t, t0, x0) = x0[x0 + (1− x0) exp
∫ t
t0

λ(s)ds]−1

with λ ∈ C(R+,R+) and its associated variational differential equation

v′ = fx(t, 0)v(t) = −λ(t)v(t),(3.2)

where f(t, x) = λ(t)[−x+x2] and fx(t, x) = λ(t)[−1+2x] with
∫∞
t0

λ(s)ds

< ∞. Then (3.1) has asymptotic equilibrium. Furthermore, (3.1) and
(3.2) are asymptotically equivalent.

Proof. The fundamental solution Φ(t, t0, 0) of (3.2) is given by Φ(t, t0, 0)
= exp(− ∫ t

t0
λ(s)ds). Then it is not hard to show that (3.2) has asymp-

totic equilibrium. Setting fx(t, 0) = A(t) and using the mean value
theorem, (3.1) can be written as

x′(t) = A(t)x(t) + G(t, x(t)) = −λ(t)x(t) + λ(t)x2(t),(3.3)

where G(t, x) =
∫ 1
0 [fx(t, θx)− fx(t, 0)]dθx. Then we obtain

|G(t, x)| ≤ |
∫ 1

0
[fx(t, θx)− fx(t, 0)]dθx|

= |λ(t)x(t)| ≤ λ(t)|x(t)| = g(t, |x|),
where g(t, u) = λ(t)u is nondecreasing in u > 0. The solution of scalar
differential equation

u′(t) = g(t, u(t)) = λ(t)u, 0 < u(0) = u0,(3.4)

is given by u(t, t0, u0) = u0 exp(
∫ t
t0

λ(s)ds). Thus all solutions u(n) of
(3.4) are bounded on R+. Note that limt→∞ exp(− ∫ t

t0
λ(s)ds)|x0| exists.

Since all conditions of Theorem 3.4 are satisfied, (3.1) has asymptotic
equilibrium. It follows that (3.1) and (3.2) are asymptotically equivalent
by Theorem 3.4.

Furthermore, there exists F (t) absolutely integrable over R+, such
that

S′(t) + S(t)fx(t, 0)− fx(t, x(t, t0, x0))S(t) = F (t)
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for some S(t) = exp(− ∫ t
t0

λ(s)ds), since
∫ ∞

t0

|F (s)|ds ≤
∫ ∞

t0

5λ(s) exp(−
∫ s

t0

λ(τ)dτ)ds

=
[
−5 exp(−

∫ t

t0

λ(s)ds

]t=∞

t=t0

< ∞, |x0| ≤ 1
2
.

Thus fx(t, 0) and fx(t, x(t, t0, x0)) are t∞-similar with limt→∞ S(t) =
S∞ < ∞, and so (3.1) has asymptotic equilibrium in variation.

We conclude that two concepts of asymptotic equilibrium and asymp-
totic equilibrium in variation for nonlinear system (1.1) are equivalent
via t∞-similarity of the associated variational systems.

Theorem 3.6. In addition to the assumptions of Theorem 2.6, we as-
sume that fx(t, 0) and fx(t, x(t, t0, x0)) are t∞- similar with limt→∞ S(t) =
S∞ for t ≥ t0 ≥ 0 and |x0| ≤ δ for some δ > 0. Then (1.1) has asymptotic
equilibrium if and only if (1.1) has asymptotic equilibrium in variation.

Proof. It follows from Theorems 3.1, 2.2 and 2.6.
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Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 9 (1950), 129-134.

[2] D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer Aca-
demic Publishers, Dordrecht, 1992.

[3] S. K. Choi and N. J. Koo, Variationally stable difference systems by n∞-
similarity, J. Math. Anal. Appl. 249 (2000), 553-568.

[4] S. K. Choi, N. J. Koo and D. M. Im, Asymptotic equivalence between linear
differential systems, Bull. Korean Math. Soc. 42 (2005), 691-701.

[5] S. K. Choi, N. J. Koo and S. Dontha, Asymptotic property in variation for
nonlinear differential systems, Appl. Math. Letters 18 (2005), 117-126.

[6] S. K. Choi and N. Koo, Asymptotic property for linear integro-differential sys-
tems, Nonlinear Analysis 70 (2009), 1862-1872.

[7] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations,
McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.

[8] R. Conti, Sulla t-similitudine tra matrici e la stabilitaá dei sistemi differenziali
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