MULTIPLICITY OF SOLUTIONS FOR A CLASS OF NON-LOCAL ELLIPTIC OPERATORS SYSTEMS

Chuanzhi Bai

Abstract. In this paper, we investigate the existence and multiplicity of solutions for systems driven by two non-local integrodifferential operators with homogeneous Dirichlet boundary conditions. The main tools are the Saddle point theorem, Ekeland's variational principle and the Mountain pass theorem

1. Introduction

This paper is concerned with the following problem

$$
\begin{cases}-\mathcal{L}_{K} u=\lambda u+F_{u}(x, u, v) & \text { in } \Omega \tag{1.1}\\ -\mathcal{L}_{G} v=\mu v+F_{v}(x, u, v) & \text { in } \Omega \\ u=v=0 & \text { in } \mathbb{R}^{n} \backslash \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{n}(n \geq 2)$ is a bounded domain with smooth boundary $\partial \Omega$, and λ, μ are two positive parameters. $F \in C^{1}\left(\bar{\Omega} \times \mathbb{R}^{2}, \mathbb{R}\right)$ satisfies some conditions which will be stated later on, \mathcal{L}_{K} and \mathcal{L}_{G} are the non-local operators defined by:

$$
\mathcal{L}_{K} u(x)=\int_{\mathbb{R}^{n}}(u(x+y)+u(x-y)-2 u(x)) K(y) d y, \quad x \in \mathbb{R}^{n}
$$

and

$$
\mathcal{L}_{G} v(x)=\int_{\mathbb{R}^{n}}(v(x+y)+v(x-y)-2 v(x)) G(y) d y, \quad x \in \mathbb{R}^{n}
$$

respectively, here $K, G: \mathbb{R}^{n} \backslash\{0\} \rightarrow(0,+\infty)$ are two functions such that

$$
\begin{equation*}
m K, m G \in L^{1}\left(\mathbb{R}^{n}\right), \quad \text { where } m(x)=\min \left\{|x|^{2}, 1\right\} \tag{1.2}
\end{equation*}
$$

there exist $\theta_{1}, \theta_{2}>0$ and $s_{1}, s_{2} \in(0,1)$ such that

$$
\begin{array}{cl}
K(x) \geq \theta_{1}|x|^{-\left(n+2 s_{1}\right)}, & G(x) \geq \theta_{2}|x|^{-\left(n+2 s_{2}\right)} \text { for any } x \in \mathbb{R}^{n} \backslash\{0\} \\
K(x)=K(-x), & G(x)=G(-x) \quad \forall x \in \mathbb{R}^{n} \backslash\{0\} . \tag{1.4}
\end{array}
$$

Received June 22, 2015; Revised May 25, 2016.
2010 Mathematics Subject Classification. 35S15, 35B30, 35B40.
Key words and phrases. integrodifferential operators, saddle point theorem, Ekeland's variational principle, Mountain pass theorem.

A typical example for K and G is given by $K(x)=|x|^{-\left(n+2 s_{1}\right)}$ and $G(x)=$ $|x|^{-\left(n+2 s_{2}\right)}$. In this case \mathcal{L}_{K} and \mathcal{L}_{G} are the fractional Laplace operators $-(-\Delta)^{s_{1}}$ and $-(-\Delta)^{s_{2}}$, where $-(-\Delta)^{s}$ is defined by

$$
-(-\Delta)^{s} u(x)=\int_{\mathbb{R}^{n}} \frac{u(x+y)+u(x-y)-2 u(x)}{|y|^{n+2 s}} d y, \quad x \in \mathbb{R}^{n}
$$

here $s \in(0,1)$ and $n>2 s$. The fractional Laplacian $-(-\Delta)^{s}$ is a classical linear integro-differential operator of order $2 s$ which gives the standard Laplacian when $s=1$.

Let X_{K} be the linear space of Lebesgue measurable functions from \mathbb{R}^{n} to \mathbb{R} such that the restriction to Ω of any function g in X_{K} belongs to $L^{2}(\Omega)$ and

$$
\text { the } \operatorname{map}(x, y) \rightarrow(g(x)-g(y)) \sqrt{K(x-y)} \text { is in } L^{2}\left(\mathbb{R}^{2 n} \backslash(\mathcal{C} \Omega \times \mathcal{C} \Omega), d x d y\right)
$$

where $\mathcal{C} \Omega:=\mathbb{R}^{n} \backslash \Omega$. Moreover,

$$
X_{0, K}=\left\{g \in X_{K}: g=0 \text { a.e. in } \mathbb{R}^{n} \backslash \Omega\right\} .
$$

Similarly, we can define the space $X_{0, G}$. Let $E_{0}=X_{0, K} \times X_{0, G}$. We say that $(u, v) \in E_{0}$ is a weak solution of problem (1.1) if for every $(\varphi, \psi) \in E_{0}$, one has

$$
\begin{aligned}
& \int_{\mathbb{R}^{2 n}}(u(x)-u(y))(\varphi(x)-\varphi(y)) K(x-y) d x d y \\
& +\int_{\mathbb{R}^{2 n}}(v(x)-v(y))(\psi(x)-\psi(y)) G(x-y) d x d y \\
& -\lambda \int_{\Omega} u(x) \varphi(x) d x-\mu \int_{\Omega} v(x) \psi(x) d x-\int_{\Omega} F_{u}(x, u(x), v(x)) \varphi(x) d x \\
& -\int_{\Omega} F_{v}(x, u(x), v(x)) \psi(x) d x=0 .
\end{aligned}
$$

The fractional Laplacian and non-local operators of elliptic type arises in both pure mathematical research and concrete applications, since these operators occur in a quite natural way in many different contexts. For an elementary introduction to this topic, see [10] and the references therein. Recently, some elliptic boundary problems driven by the non-local integrodifferential operator \mathcal{L}_{K} have been studied in the works $[3,4,6,7,8,12,13,14]$.

In this paper, inspired by the ideas introduced in $[1,3,12]$, we will show how the multiplicity of solutions of problem (1.1) changes as λ and μ vary. To the best of our knowledge, this is an interesting and new research topic for non-local operators of elliptic type.

Denote by $0<\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{k} \leq \cdots$ the eigenvalues of the following non-local eigenvalue problem

$$
\begin{cases}-\mathcal{L}_{K} u=\lambda u & \text { in } \Omega \tag{1.5}\\ u=0 & \text { in } \mathbb{R}^{n} \backslash \Omega\end{cases}
$$

Similarly, denote by $0<\mu_{1}<\mu_{2} \leq \cdots \leq \mu_{k} \leq \cdots$ the eigenvalues of the following non-local eigenvalue problem

$$
\begin{cases}-\mathcal{L}_{G} v=\mu v & \text { in } \Omega \tag{1.6}\\ v=0 & \text { in } \mathbb{R}^{n} \backslash \Omega\end{cases}
$$

Our main results are given by the following theorems.
Theorem 1.1. Let $F(x, 0,0)$ be bounded for each $x \in \Omega$. If F satisfies

$$
\begin{equation*}
\lim _{|u| \rightarrow+\infty} \frac{\left|F_{u}(x, u, v)\right|}{|u|}=0, \quad \lim _{|v| \rightarrow+\infty} \frac{\left|F_{v}(x, u, v)\right|}{|v|}=0 \tag{H1}
\end{equation*}
$$

uniformly in $x \in \bar{\Omega}$. Then for $\lambda_{1}<\lambda<\lambda_{2}$ and $\mu_{1}<\mu<\mu_{2}$, problem (1.1) has at least one solution.

Theorem 1.2. Let $F(x, 0,0)$ be bounded for each $x \in \Omega$. Assume that the nonlinearity F satisfies (H1) and

$$
\begin{equation*}
\lim _{\left|t_{1}\right|,\left|t_{2}\right| \rightarrow+\infty} F\left(x, t_{1} e_{1}, t_{2} \omega_{1}\right)=+\infty \tag{H2}
\end{equation*}
$$

uniformly in $x \in \bar{\Omega}$, where e_{1} is a normalized eigenfunction corresponding to λ_{1} and ω_{1} is a normalized eigenfunction corresponding to μ_{1}. Then for $\lambda<\lambda_{1}$ and $\mu<\mu_{1}$ sufficiently close to λ_{1} and μ_{1}, problem (1.1) has at least three solutions.
Remark 1.1. The case of $\lambda_{1}<\frac{\lambda_{2}}{2}$ is attainable. In fact, if $K(x)=|x|^{-\left(n+2 s_{1}\right)}$ $\left(s_{1} \in(0,1)\right.$, then $-\mathcal{L}_{K}=(-\Delta)^{s_{1}}$. In [11], Kwaśnicki studied the asymptotic behavior of the eigenvalues of the spectral problem for the one-dimensional fractional Laplace operator $(-\Delta)^{\alpha / 2}(\alpha \in(0,2))$ in the interval $D=(-1,1)$, from [11, Table 2], we know that eigenvalues $\lambda_{1}<\frac{\lambda_{2}}{2}$ for $\alpha>1$. If $\alpha \rightarrow 2$, then the fractional Laplace operator $(-\Delta)^{\alpha / 2}$ reduces to the Laplace operator $-\Delta$. The eigenvalues λ_{1} and λ_{2} of the spectral problem for the two-dimensional Laplace operator $-\Delta$ in the rectangle $D=(0, a) \times(0, b)(a>b>0)$ had been given as follows ([5], page 83):

$$
\lambda_{1}=\frac{\pi^{2}}{a^{2}}+\frac{\pi^{2}}{b^{2}}, \quad \lambda_{2}=\frac{4 \pi^{2}}{a^{2}}+\frac{\pi^{2}}{b^{2}}
$$

Let $a=5$ and $b=4$, then

$$
\lambda_{1}=\frac{41}{400} \pi^{2}<\frac{1}{2} \cdot \frac{89}{400} \pi^{2}=\frac{1}{2} \lambda_{2} .
$$

2. Preliminaries

The space X_{K} is endowed with the norm defined as

$$
\begin{equation*}
\|g\|_{K}=\|g\|_{L^{2}(\Omega)}+\left(\int_{Q}|g(x)-g(y)|^{2} K(x-y) d x d y\right)^{1 / 2} \tag{2.1}
\end{equation*}
$$

where $Q=\mathbb{R}^{2 n} \backslash \mathcal{O}$. Here $\mathcal{O}=(\mathcal{C} \Omega \times \mathcal{C} \Omega) \subset \mathbb{R}^{2 n}$ and $\mathcal{C} \Omega=\mathbb{R}^{n} \backslash \Omega$. It is easily seen that $\|\cdot\|_{K}$ is a norm on X_{K} (see, for instance, [12] for a proof).

By [12], a sort of Poincaré-Sobolev inequality for functions in $X_{0, K}$ is given as follows.

Lemma 2.1 ([12]). Suppose that $K: \mathbb{R}^{n} \backslash\{0\} \rightarrow(0,+\infty)$ satisfies assumptions (1.2)-(1.4). Then
(1) there exists a positive constant c_{1}, depending only on n and s_{1}, such that for any $u \in X_{0, K}$

$$
\|u\|_{L^{2 *}(\Omega)}^{2}=\|u\|_{L^{2 s_{1}}\left(\mathbb{R}^{n}\right)}^{2} \leq c_{1} \int_{\mathbb{R}^{2 n}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{n+2 s_{1}}} d x d y
$$

where $2_{s_{1}}^{*}=2 n /\left(n-2 s_{1}\right)$;
(2) there exits a constant $C>1$, depending only on n, s_{1}, θ_{1} and Ω, such that for any $u \in X_{0, K}$

$$
\int_{Q}|u(x)-u(y)|^{2} K(x-y) d x d y \leq\|u\|_{K}^{2} \leq C \int_{Q}|u(x)-u(y)|^{2} K(x-y) d x d y
$$

that is

$$
\begin{equation*}
\|u\|_{X_{0, K}}=\left(\int_{Q}|u(x)-u(y)|^{2} K(x-y) d x d y\right)^{1 / 2} \tag{2.2}
\end{equation*}
$$

is a norm on $X_{0, K}$ equivalent to the usual one defined in (2.1).
Lemma 2.2 ([12]). $\left(X_{0, K},\|\cdot\|_{X_{K}}\right)$ is a Hilbert space, with the scalar product

$$
\begin{equation*}
\langle u, v\rangle_{X_{0, K}}=\int_{Q}(u(x)-u(y))(v(x)-v(y)) K(x-y) d x d y . \tag{2.3}
\end{equation*}
$$

Since $v \in X_{0, K}$, we have $v=0$ a.e. in $\mathbb{R}^{n} \backslash \Omega$. Thus the integrals in (2.2) and in (2.3) can be extended to all $\mathbb{R}^{2 n}$.
Remark 2.1. Similarly, we can define $\|u\|_{X_{0, G}}$ and $\langle u, v\rangle_{X_{0, G}}$ if only replaced K by G in Lemma 2.1 and Lemma 2.2 respectively. Moreover, there exists a positive constant c_{2}, depending only on n and s_{2}, such that for any $v \in X_{0, G}$

$$
\|v\|_{L^{2_{s_{2}}(\Omega)}}^{2}=\|v\|_{L^{2 *}}^{2}{ }^{2 *}\left(\mathbb{R}^{n}\right)=c_{2} \int_{\mathbb{R}^{2 n}} \frac{|v(x)-v(y)|^{2}}{|x-y|^{n+2 s_{2}}} d x d y
$$

where $2_{s_{2}}^{*}=2 n /\left(n-2 s_{2}\right)$.
Space $E_{0}=X_{0, K} \times X_{0, G}$ is the Cartesian product of two Hilbert spaces, which is a reflexive Banach space endowed with the norm

$$
\begin{aligned}
\|(u, v)\|= & \|u\|_{0, K}+\|v\|_{0, G} \\
= & \left(\int_{Q}|u(x)-u(y)|^{2} K(x-y) d x d y\right)^{1 / 2} \\
& +\left(\int_{Q}|v(x)-v(y)|^{2} G(x-y) d x d y\right)^{1 / 2} .
\end{aligned}
$$

From [13, Proposition 9], we have:

Lemma 2.3 (Eigenvalues and eigenfunctions of $\left.-\mathcal{L}_{K}\right)$. Let $K: \mathbb{R}^{n} \backslash\{0\} \rightarrow$ $(0,+\infty)$ be a function satisfying assumptions (1.2)-(1.4). Then
a)

$$
\begin{align*}
\lambda_{1} & =\min _{u \in X_{0, K} \backslash\{0\}} \frac{\int_{\mathbb{R}^{2 n}}|u(x)-u(y)|^{2} K(x-y) d x d y}{\int_{\Omega}|u(x)|^{2} d x} \\
& =\min _{u \in X_{0, K},\|u\|_{L^{2}(\Omega)}=1} \int_{\mathbb{R}^{2 n}}|u(x)-u(y)|^{2} K(x-y) d x d y \tag{2.4}
\end{align*}
$$

b) there exists a non-negative function $e_{1} \in X_{0, K}$, which is an eigenfunction corresponding to λ_{1}, attaining the minimum in (2.4), that is $\left\|e_{1}\right\|_{L^{2}(\Omega)}=1$ and

$$
\begin{equation*}
\lambda_{1}=\int_{\mathbb{R}^{2 n}}\left|e_{1}(x)-e_{1}(y)\right|^{2} K(x-y) d x d y \tag{2.5}
\end{equation*}
$$

c)

$$
\begin{align*}
\lambda_{2} & =\min _{u \in\left\langle e_{1}\right\rangle^{\perp}} \frac{\int_{\mathbb{R}^{2 n}}|u(x)-u(y)|^{2} K(x-y) d x d y}{\int_{\Omega}|u(x)|^{2} d x} \\
& =\min _{u \in\left\langle e_{1}\right\rangle^{\perp},\|u\|_{L^{2}(\Omega)}=1} \int_{\mathbb{R}^{2 n}}|u(x)-u(y)|^{2} K(x-y) d x d y . \tag{2.6}
\end{align*}
$$

3. Main results

By [13] we know that $(u, v) \in E_{0}$ is a weak solution of problem (1.1) is equivalent to being a critical point of the functional

$$
\begin{align*}
\mathcal{J}_{\lambda, \mu}(u, v)= & \frac{1}{2} \int_{\mathbb{R}^{2 n}}|u(x)-u(y)|^{2} K(x-y) d x d y \\
& +\frac{1}{2} \int_{\mathbb{R}^{2 n}}|v(x)-v(y)|^{2} G(x-y) d x d y \\
& -\frac{\lambda}{2} \int_{\Omega}|u(x)|^{2} d x-\frac{\mu}{2} \int_{\Omega}|v(x)|^{2} d x-\int_{\Omega} F(x, u, v) d x \tag{3.1}
\end{align*}
$$

Since the potential F satisfies (H1), it follows that $\mathcal{J}_{\lambda, \mu} \in C^{1}(E, \mathbb{R})$.
Thanks to the fact that $L^{2_{s_{1}}^{*}}(\Omega) \hookrightarrow L^{2}(\Omega)$ is continuous, we get

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)}^{2} \leq|\Omega|^{\left(2_{s_{1}}^{*}-2\right) / 2_{s_{1}}^{*}}\|u\|_{L^{2_{s_{1}}^{*}(\Omega)}}^{2} . \tag{3.2}
\end{equation*}
$$

Using (1.3) and Lemma 2.1(1), we have

$$
\begin{align*}
\|u\|_{L^{2_{s_{1}}^{*}}(\Omega)} & \leq \sqrt{c_{1}}\left(\int_{\mathbb{R}^{2 n}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{n+2 s_{1}}} d x d y\right)^{1 / 2} \\
& \leq \sqrt{\frac{c_{1}}{\theta_{1}}}\left(\int_{\mathbb{R}^{2 n}}|u(x)-u(y)|^{2} K(x-y) d x d y\right)^{1 / 2} \\
& =\sqrt{\frac{c_{1}}{\theta_{1}}}\|u\|_{0, K} . \tag{3.3}
\end{align*}
$$

Substituting (3.3) into (3.2), we get

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)} \leq|\Omega|^{\left(2_{s_{1}}^{*}-2\right) / 2 \cdot 2_{s_{1}}^{*}} \sqrt{\frac{c_{1}}{\theta_{1}}}\|u\|_{0, K} \tag{3.4}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\|v\|_{L^{2}(\Omega)} \leq|\Omega|^{\left(2_{s_{2}}^{*}-2\right) / 2 \cdot 2_{s_{2}}^{*}} \sqrt{\frac{c_{2}}{\theta_{2}}}\|v\|_{0, G} \tag{3.5}
\end{equation*}
$$

The main results of Theorem 1.1 are proved by the saddle point theorem [9] and those of Theorem 1.2 are based on Ekeland's variational principle and the Mountain pass theorem [2].

Proof Theorem 1.1. Let $\left\{z_{n}\right\}=\left\{\left(u_{n}, v_{n}\right)\right\} \subset E_{0}$ satisfy

$$
\begin{equation*}
\mathcal{J}_{\lambda, \mu}\left(z_{n}\right) \rightarrow c \in \mathbb{R}, \quad\left\|\mathcal{J}_{\lambda, \mu}^{\prime}\left(z_{n}\right)\right\|_{E_{0}^{*}} \rightarrow 0 \tag{3.6}
\end{equation*}
$$

as $n \rightarrow \infty$. Firstly, we prove that $\left\{z_{n}\right\}$ in bounded in E_{0}. From (H1) and the continuity of the potential F, for any $\varepsilon>0$, there exists a positive constant W_{ε} such that

$$
\begin{equation*}
\left|\frac{\partial F}{\partial u}(x, u, v)\right| \leq \varepsilon|u|+W_{\varepsilon}, \quad\left|\frac{\partial F}{\partial v}(x, u, v)\right| \leq \varepsilon|v|+W_{\varepsilon} \tag{3.7}
\end{equation*}
$$

for all $(x, u, v) \in \bar{\Omega} \times \mathbb{R}^{2}$. Putting $Z=\left\langle e_{1}\right\rangle \times\left\langle\omega_{1}\right\rangle$, and

$$
Z^{\prime}=\left\{(u, v) \in E_{0}: u \in\left\langle e_{1}\right\rangle^{\perp}, v \in\left\langle\omega_{1}\right\rangle^{\perp}\right\}
$$

We can easily know that Z^{\prime} is a complementary subspace of Z. Hence we have the following direct sum

$$
E_{0}=Z \bigoplus Z^{\prime}
$$

Let $z_{n}=z_{n}^{-}+z_{n}^{+} \in E_{0}$, where $z_{n}^{-}=\left(u_{n}^{-}, v_{n}^{-}\right) \in Z, z_{n}^{+}=\left(u_{n}^{+}, v_{n}^{+}\right) \in Z^{\prime}$. For large n, we obtain by (3.6) that

$$
\begin{aligned}
& \left|\mathcal{J}_{\lambda, \mu}^{\prime}\left(u_{n}, v_{n}\right)\left(\frac{u_{n}^{+}}{2}, \frac{v_{n}^{+}}{2}\right)\right| \\
= & \left\lvert\, \frac{1}{2} \int_{\mathbb{R}^{2 n}}\left(u_{n}(x)-u_{n}(y)\right)\left(u_{n}^{+}(x)-u_{n}^{+}(y)\right) K(x-y) d x d y\right. \\
& +\frac{1}{2} \int_{\mathbb{R}^{2 n}}\left(v_{n}(x)-v_{n}(y)\right)\left(v_{n}^{+}(x)-v_{n}^{+}(y)\right) G(x-y) d x d y \\
& -\frac{\lambda}{2} \int_{\Omega} u_{n}(x) u_{n}^{+}(x) d x-\frac{\mu}{2} \int_{\Omega} v_{n}(x) v_{n}^{+}(x) d x \\
& \left.-\frac{1}{2} \int_{\Omega} F_{u}\left(x, u_{n}, v_{n}\right) u_{n}^{+}(x) d x-\frac{1}{2} \int_{\Omega} F_{v}\left(x, u_{n}, v_{n}\right) v_{n}^{+}(x) d x \right\rvert\, \\
\leq & \left\|\left(\frac{u_{n}^{+}}{2}, \frac{v_{n}^{+}}{2}\right)\right\| .
\end{aligned}
$$

On the other hand, by Claim 2 in Appendix A of [13], by (2.6), (3.4), (3.5) and (3.7), we have

$$
\begin{align*}
& \frac{1}{2} \int_{\mathbb{R}^{2 n}}\left(u_{n}(x)-u_{n}(y)\right)\left(u_{n}^{+}(x)-u_{n}^{+}(y)\right) K(x-y) d x d y \\
& +\frac{1}{2} \int_{\mathbb{R}^{2 n}}\left(v_{n}(x)-v_{n}(y)\right)\left(v_{n}^{+}(x)-v_{n}^{+}(y)\right) G(x-y) d x d y \\
& -\frac{\lambda}{2} \int_{\Omega} u_{n}(x) u_{n}^{+}(x) d x-\frac{\mu}{2} \int_{\Omega} v_{n}(x) v_{n}^{+}(x) d x \\
= & \frac{1}{2}\left\|u_{n}^{+}\right\|_{0, K}^{2}+\frac{1}{2}\left\|v_{n}^{+}\right\|_{0, G}^{2}-\frac{\lambda}{2} \int_{\Omega}\left|u_{n}^{+}(x)\right|^{2} d x-\frac{\mu}{2} \int_{\Omega}\left|v_{n}^{+}(x)\right|^{2} d x \tag{3.9}
\end{align*}
$$

$$
\left|\int_{\Omega} F_{u}\left(x, u_{n}, v_{n}\right) u_{n}^{+} d x\right| \leq \int_{\Omega}\left(\epsilon\left|u_{n}\right|+W_{\epsilon}\right)\left|u_{n}^{+}\right| d x
$$

$$
\leq \frac{3 \epsilon}{2}\left\|u_{n}^{+}\right\|_{L^{2}(\Omega)}^{2}+\frac{\epsilon}{2}\left\|u_{n}^{-}\right\|_{L^{2}(\Omega)}^{2}+W_{\epsilon}|\Omega|^{1 / 2}\left\|u_{n}^{+}\right\|_{L^{2}(\Omega)}
$$

$$
\leq \frac{\epsilon}{2}|\Omega|^{\left(2_{s_{1}}^{*}-2\right) / 2_{s_{1}}^{*}} \frac{c_{1}}{\theta_{1}}\left(3\left\|u_{n}^{+}\right\|_{0, K}^{2}+\left\|u_{n}^{-}\right\|_{0, K}^{2}\right)
$$

$$
\begin{equation*}
+W_{\epsilon}|\Omega|^{\left(2_{s_{1}}^{*}-1\right) / 2_{s_{1}}^{*}} \sqrt{\frac{c_{1}}{\theta_{1}}}\left\|u_{n}^{+}\right\|_{0, K} \tag{3.10}
\end{equation*}
$$

$$
\begin{align*}
\left|\int_{\Omega} F_{v}\left(x, u_{n}, v_{n}\right) v_{n}^{+} d x\right| \leq & \frac{\epsilon}{2}|\Omega|^{\left(2_{s_{2}}^{*}-2\right) / 2_{s_{2}}^{*}} \frac{c_{2}}{\theta_{2}}\left(3\left\|v_{n}^{+}\right\|_{0, G}^{2}+\left\|v_{n}^{-}\right\|_{0, G}^{2}\right) \\
& +W_{\epsilon}|\Omega|^{\left(2_{s_{2}}^{*}-1\right) / 2_{s_{2}}^{*}} \sqrt{\frac{c_{2}}{\theta_{2}}}\left\|v_{n}^{+}\right\|_{0, K} \tag{3.11}
\end{align*}
$$

Substituting (3.9), (3.10) and (3.11) into (3.8), we obtain

$$
\begin{aligned}
& \left\|\left(\frac{u_{n}^{+}}{2}, \frac{v_{n}^{+}}{2}\right)\right\| \geq \frac{1}{2}\left\|u_{n}^{+}\right\|_{0, K}^{2}+\frac{1}{2}\left\|v_{n}^{+}\right\|_{0, G}^{2}-\frac{\lambda}{2} \int_{\Omega}\left|u_{n}^{+}(x)\right|^{2} d x-\frac{\mu}{2} \int_{\Omega}\left|v_{n}^{+}(x)\right|^{2} d x \\
& -\frac{1}{2}\left[\epsilon|\Omega|^{\left(2_{s_{1}}^{*}-2\right) / 2_{s_{1}}^{*}} \frac{c_{1}}{\theta_{1}}\left(3\left\|u_{n}^{+}\right\|_{0, K}^{2}+\left\|u_{n}^{-}\right\|_{0, K}^{2}\right)\right. \\
& \left.\quad+W_{\epsilon}|\Omega|^{\left(2_{s_{1}}^{*}-1\right) / 2_{s_{1}}^{*}} \sqrt{\frac{c_{1}}{\theta_{1}}}\left\|u_{n}^{+}\right\|_{0, K}\right] \\
& -\frac{1}{2}\left[\epsilon|\Omega|^{\left(2_{s_{2}}^{*}-2\right) / 2_{s_{2}}^{*}} \frac{c_{2}}{\theta_{2}}\left(3\left\|v_{n}^{+}\right\|_{0, G}^{2}+\left\|v_{n}^{-}\right\|_{0, G}^{2}\right)\right. \\
& (3.12) \\
& \left.+W_{\epsilon}|\Omega|^{\left(2_{s_{2}}^{*}-1\right) / 2_{s_{2}}^{*}} \sqrt{\frac{c_{2}}{\theta_{2}}}\left\|v_{n}^{+}\right\|_{0, G}\right] .
\end{aligned}
$$

From (3.6), we have for large n that

$$
\left|\mathcal{J}_{\lambda, \mu}^{\prime}\left(u_{n}, v_{n}\right)\left(\frac{u_{n}^{-}}{2}, \frac{v_{n}^{-}}{2}\right)\right|
$$

$$
\begin{align*}
= & \left\lvert\, \frac{1}{2} \int_{\mathbb{R}^{2 n}}\left(u_{n}(x)-u_{n}(y)\right)\left(u_{n}^{-}(x)-u_{n}^{-}(y)\right) K(x-y) d x d y\right. \\
& +\frac{1}{2} \int_{\mathbb{R}^{2 n}}\left(v_{n}(x)-v_{n}(y)\right)\left(v_{n}^{-}(x)-v_{n}^{-}(y)\right) G(x-y) d x d y \\
& -\frac{\lambda}{2} \int_{\Omega} u_{n}(x) u_{n}^{-}(x) d x-\frac{\mu}{2} \int_{\Omega} v_{n}(x) v_{n}^{-}(x) d x \\
& \left.-\frac{1}{2} \int_{\Omega} F_{u}\left(x, u_{n}, v_{n}\right) u_{n}^{-}(x) d x-\frac{1}{2} \int_{\Omega} F_{v}\left(x, u_{n}, v_{n}\right) v_{n}^{-}(x) d x \right\rvert\, \\
\leq & \left\|\left(\frac{u_{n}^{-}}{2}, \frac{v_{n}^{-}}{2}\right)\right\| \tag{3.13}
\end{align*}
$$

Similar to the proof of (3.9)-(3.11), we get by (3.13) that

$$
\begin{aligned}
\left\|\left(\frac{u_{n}^{-}}{2}, \frac{v_{n}^{-}}{2}\right)\right\| \geq & \frac{\lambda}{2} \int_{\Omega}\left|u_{n}^{-}(x)\right|^{2} d x+\frac{\mu}{2} \int_{\Omega}\left|v_{n}^{-}(x)\right|^{2} d x-\frac{1}{2}\left\|u_{n}^{-}\right\|_{0, K}^{2}-\frac{1}{2}\left\|v_{n}^{-}\right\|_{0, G}^{2} \\
& -\frac{1}{2}\left[\epsilon|\Omega|^{\left(2_{s_{1}}^{*}-2\right) / 2_{s_{1}}^{*}} \frac{c_{1}}{\theta_{1}}\left(3\left\|u_{n}^{-}\right\|_{0, K}^{2}+\left\|u_{n}^{+}\right\|_{0, K}^{2}\right)\right. \\
& \left.+W_{\epsilon}|\Omega|^{\left(2_{s_{1}}^{*}-1\right) / 2_{s_{1}}^{*}} \sqrt{\frac{c_{1}}{\theta_{1}}}\left\|u_{n}^{-}\right\|_{0, K}\right] \\
& -\frac{1}{2}\left[\epsilon|\Omega|^{\left(2_{s_{2}}^{*}-2\right) / 2_{s_{2}}^{*}} \frac{c_{2}}{\theta_{2}}\left(3\left\|v_{n}^{-}\right\|_{0, G}^{2}+\left\|v_{n}^{+}\right\|_{0, G}^{2}\right)\right. \\
(3.14) & \left.+W_{\epsilon}|\Omega|^{\left(2_{s_{2}}^{*}-1\right) / 2_{s_{2}}^{*}} \sqrt{\frac{c_{2}}{\theta_{2}}}\left\|v_{n}^{-}\right\|_{0, G}\right] .
\end{aligned}
$$

Since

$$
\begin{aligned}
\left(\left\|u_{n}^{+}\right\|_{0, K}+\left\|u_{n}^{-}\right\|_{0, K}\right)^{2} & \leq 2\left(\left\|u_{n}^{+}\right\|_{0, K}^{2}+\left\|u_{n}^{-}\right\|_{0, K}^{2}\right) \\
& =2\left\|u_{n}\right\|_{0, K}^{2},
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left\|v_{n}^{+}\right\|_{0, G}+\left\|v_{n}^{-}\right\|_{0, G}\right)^{2} & \leq 2\left(\left\|v_{n}^{+}\right\|_{0, G}^{2}+\left\|v_{n}^{-}\right\|_{0, G}^{2}\right) \\
& =2\left\|v_{n}\right\|_{0, G}^{2}
\end{aligned}
$$

we have

$$
\begin{aligned}
\left\|\left(u_{n}^{+}, v_{n}^{+}\right)\right\|+\left\|\left(u_{n}^{-}, v_{n}^{-}\right)\right\| & =\left(\left\|u_{n}^{+}\right\|_{0, K}+\left\|u_{n}^{-}\right\|_{0, K}\right)+\left(\left\|v_{n}^{+}\right\|_{0, G}+\left\|v_{n}^{-}\right\|_{0, G}\right) \\
& \leq \sqrt{2}\left(\left\|u_{n}\right\|_{0, K}+\left\|v_{n}\right\|_{0, G}\right) \\
& =\sqrt{2}\left\|\left(u_{n}, v_{n}\right)\right\| .
\end{aligned}
$$

Thus, from (3.13)-(3.15), we obtain

$$
\begin{aligned}
& \frac{\sqrt{2}}{2}\left\|\left(u_{n}, v_{n}\right)\right\| \\
\geq & \left\|\left(\frac{u_{n}^{+}}{2}, \frac{v_{n}^{+}}{2}\right)\right\|+\left\|\left(\frac{u_{n}^{-}}{2}, \frac{v_{n}^{-}}{2}\right)\right\|
\end{aligned}
$$

$$
\begin{align*}
& \geq \frac{1}{2}\left\|u_{n}^{+}\right\|_{0, K}^{2}-\frac{\lambda}{2} \int_{\Omega}\left|u_{n}^{+}(x)\right|^{2} d x+\frac{1}{2}\left\|v_{n}^{+}\right\|_{0, G}^{2}-\frac{\mu}{2} \int_{\Omega}\left|v_{n}^{+}(x)\right|^{2} d x \\
& +\frac{\lambda}{2} \int_{\Omega}\left|u_{n}^{-}(x)\right|^{2} d x+\frac{\mu}{2} \int_{\Omega}\left|v_{n}^{-}(x)\right|^{2} d x-\frac{1}{2}\left\|u_{n}^{-}\right\|_{0, K}^{2}-\frac{1}{2}\left\|v_{n}^{-}\right\|_{0, G}^{2} \\
& -2 \epsilon|\Omega|^{\left(2_{s_{1}}^{*}-2\right) / 2_{s_{1}}^{*}} \frac{c_{1}}{\theta_{1}}\left(\left\|u_{n}^{+}\right\|_{0, K}^{2}+\left\|u_{n}^{-}\right\|_{0, K}^{2}\right) \\
& -\frac{1}{2} W_{\epsilon}|\Omega|^{\left(2_{s_{1}}^{*}-1\right) / 2_{s_{1}}^{*}} \sqrt{\frac{c_{1}}{\theta_{1}}}\left(\left\|u_{n}^{+}\right\|_{0, K}+\left\|u_{n}^{-}\right\|_{0, K}\right) \\
& -2 \epsilon|\Omega|^{\left(2_{s_{2}}^{*}-2\right) / 2_{s_{2}}^{*}} \frac{c_{2}}{\theta_{2}}\left(\left\|v_{n}^{+}\right\|_{0, G}^{2}+\left\|v_{n}^{-}\right\|_{0, G}^{2}\right) \\
& -\frac{1}{2} W_{\epsilon}|\Omega|^{\left(2_{s_{2}}^{*}-1\right) / 2_{s_{2}}^{*}} \sqrt{\frac{c_{2}}{\theta_{2}}}\left(\left\|v_{n}^{+}\right\|_{0, G}+\left\|v_{n}^{-}\right\|_{0, G}\right) \\
& \geq \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{2}}\right)\left\|u_{n}^{+}\right\|_{0, K}^{2}+\frac{1}{2}\left(1-\frac{\mu}{\mu_{2}}\right)\left\|v_{n}^{+}\right\|_{0, G}^{2} \\
& +\frac{1}{2}\left(\frac{\lambda}{\lambda_{1}}-1\right)\left\|u_{n}^{-}\right\|_{0, K}^{2}+\frac{1}{2}\left(\frac{\mu}{\mu_{1}}-1\right)\left\|v_{n}^{-}\right\|_{0, G}^{2} \\
& -2 \epsilon|\Omega|^{\left(2_{s_{1}}^{*}-2\right) / 2_{s_{1}}^{*}} \frac{c_{1}}{\theta_{1}}\left\|u_{n}\right\|_{0, K}^{2}-2 \epsilon|\Omega|^{\left(2_{s_{2}}^{*}-2\right) / 2_{s_{2}}^{*}} \frac{c_{2}}{\theta_{2}}\left\|v_{n}\right\|_{0, G}^{2} \\
& -\frac{1}{2} W_{\epsilon} \max \left\{|\Omega|^{\left(2_{s_{1}}^{*}-1\right) / 2_{s_{1}}^{*}} \sqrt{\frac{c_{1}}{\theta_{1}}},|\Omega|^{\left(2_{s_{2}}^{*}-1\right) / 2_{s_{2}}^{*}} \sqrt{\frac{c_{2}}{\theta_{2}}}\right\} \sqrt{2}\left\|\left(u_{n}, v_{n}\right)\right\| \\
& \geq \frac{1}{2} \min \left\{\left(1-\frac{\lambda}{\lambda_{2}}\right),\left(\frac{\lambda}{\lambda_{1}}-1\right),\left(1-\frac{\mu}{\mu_{2}}\right),\left(\frac{\mu}{\mu_{1}}-1\right)\right\} \\
& \left(\left\|u_{n}\right\|_{0, K}^{2}+\left\|v_{n}\right\|_{0, G}^{2}\right) \\
& -2 \epsilon \max \left\{|\Omega|^{\left(2_{s_{1}}^{*}-2\right) / 2_{s_{1}}^{*}} \frac{c_{1}}{\theta_{1}},|\Omega|^{\left(2_{s_{2}}^{*}-2\right) / 2_{s_{2}}^{*}} \frac{c_{2}}{\theta_{2}}\right\}\left(\left\|u_{n}\right\|_{0, K}^{2}+\left\|v_{n}\right\|_{0, G}^{2}\right) \\
& -\frac{\sqrt{2}}{2} W_{\epsilon} \max \left\{|\Omega|^{\left(2_{s_{1}}^{*}-1\right) / 2_{s_{1}}^{*}} \sqrt{\frac{c_{1}}{\theta_{1}}},|\Omega|^{\left(2_{s_{2}}^{*}-1\right) / 2_{s_{2}}^{*}} \sqrt{\frac{c_{2}}{\theta_{2}}}\right\}\left\|\left(u_{n}, v_{n}\right)\right\| \\
& \geq \frac{1}{4} \min \left\{\left(1-\frac{\lambda}{\lambda_{2}}\right),\left(\frac{\lambda}{\lambda_{1}}-1\right),\left(1-\frac{\mu}{\mu_{2}}\right),\left(\frac{\mu}{\mu_{1}}-1\right)\right\}\left\|\left(u_{n}, v_{n}\right)\right\|^{2} \\
& -2 \epsilon \max \left\{|\Omega|^{\left(2_{s_{1}}^{*}-2\right) / 2_{s_{1}}^{*}} \frac{c_{1}}{\theta_{1}},|\Omega|^{\left(2_{s_{2}}^{*}-2\right) / 2_{s_{2}}^{*}} \frac{c_{2}}{\theta_{2}}\right\}\left\|\left(u_{n}, v_{n}\right)\right\|^{2} \\
& -\frac{\sqrt{2}}{2} W_{\epsilon} \max \left\{|\Omega|^{\left(2_{s_{1}}^{*}-1\right) / 2_{s_{1}}^{*}} \sqrt{\frac{c_{1}}{\theta_{1}}},|\Omega|^{\left(2_{s_{2}}^{*}-1\right) / 2_{s_{2}}^{*}} \sqrt{\frac{c_{2}}{\theta_{2}}}\right\}\left\|\left(u_{n}, v_{n}\right)\right\| \text {. } \tag{3.16}
\end{align*}
$$

So $\left\{z_{n}\right\}$ is bounded in E_{0} by $\lambda_{1}<\lambda<\lambda_{2}, \mu_{1}<\mu<\mu_{2}$, and ϵ sufficiently small. Similar to the proof of Step 2 of Proposition 2 in [15], we can obtain that $\left\{z_{n}\right\}$ has a convergent subsequence. So, the functional $\mathcal{J}_{\lambda, \mu}$ satisfies the (PS) condition. In the following, we will show that the functional $\mathcal{J}_{\lambda, \mu}$ has the geometry of the saddle point theorem.

Since $F(x, 0,0)$ is bounded on Ω, there exists a constant $M_{1}>0$ such that $|F(x, 0,0)| \leq M_{1}$ for any $x \in \Omega$. From (3.7), we obtain

$$
\begin{aligned}
|F(x, u, v)| & =\left|\int_{0}^{u} \frac{\partial F}{\partial s}(x, s, v) d s+F(x, 0, v)\right| \\
& =\left|\int_{0}^{u} \frac{\partial F}{\partial s}(x, s, v) d s+\int_{0}^{v} \frac{\partial F}{\partial s}(x, 0, s) d s+F(x, 0,0)\right| \\
& \leq \int_{0}^{|u|}\left(\varepsilon|s|+W_{\varepsilon}\right) d s+\int_{0}^{|v|}\left(\varepsilon|s|+W_{\varepsilon}\right) d s+M_{1} \\
& =\frac{\varepsilon}{2}\left(u^{2}+v^{2}\right)+W_{\varepsilon}(|u|+|v|)+M_{1}
\end{aligned}
$$

Thus, By (3.4), (3.5) and Hölder's inequality, we have

$$
\begin{align*}
\left|\int_{\Omega} F(x, u, v) d x\right| \leq & \int_{\Omega}|F(x, u, v)| d x \\
\leq & \frac{\varepsilon}{2}\left(\int_{\Omega} u^{2} d x+\int_{\Omega} v^{2} d x\right) \\
& +W_{\varepsilon}|\Omega|^{1 / 2}\left[\left(\int_{\Omega} u^{2} d x\right)^{1 / 2}+\left(\int_{\Omega} v^{2} d x\right)^{1 / 2}\right]+M_{1}|\Omega| \\
\leq & \frac{\varepsilon}{2 \lambda_{1}} \int_{Q}|u(x)-u(y)|^{2} K(x-y) d x d y \\
& +\frac{\varepsilon}{2 \mu_{1}} \int_{Q}|v(x)-v(y)|^{2} G(x-y) d x d y \\
& +W_{\varepsilon}\left[|\Omega|^{\left(2_{s_{1}}^{*}-1\right) / 2_{s_{1}}^{*}} \sqrt{\frac{c_{1}}{\theta_{1}}}\|u\|_{0, K}+|\Omega|^{\left(2_{s_{2}}^{*}-1\right) / 2_{s_{2}}^{*}}\right. \\
& \left.+\sqrt{\frac{c_{2}}{\theta_{2}}}\|v\|_{0, G}\right]+M_{1}|\Omega| \\
\leq & \frac{\varepsilon}{2 \lambda_{1}}\|u\|_{0, K}^{2}+\frac{\varepsilon}{2 \mu_{1}}\|v\|_{0, G}^{2}+M_{2}\left(\|u\|_{0, K}+\|v\|_{0, G}\right)+M_{1}|\Omega| \tag{3.17}
\end{align*}
$$

where $M_{2}=\max \left\{W_{\varepsilon}|\Omega|^{\left(2_{s_{1}}^{*}-1\right) / 2_{s_{1}}^{*}} \sqrt{\frac{c_{1}}{\theta_{1}}}, W_{\varepsilon}|\Omega|^{\left(2_{s_{2}}^{*}-1\right) / 2_{s_{2}}^{*}} \sqrt{\frac{c_{2}}{\theta_{2}}}\right\}$.
For any $z=(u, v) \in Z$, we get from (3.17) and Lemma 2.3(b) that

$$
\begin{aligned}
\mathcal{J}_{\lambda, \mu}(u, v)= & \frac{1}{2}\left(\|u\|_{0, K}^{2}+\|v\|_{0, G}^{2}\right)-\frac{\lambda}{2} \int_{\Omega}|u(x)|^{2} d x \\
& -\frac{\mu}{2} \int_{\Omega}|v(x)|^{2} d x-\int_{\Omega} F(x, u, v) d x \\
= & \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{1}}\right)\|u\|_{0, K}^{2}+\frac{1}{2}\left(1-\frac{\mu}{\mu_{1}}\right)\|v\|_{0, G}^{2}-\int_{\Omega} F(x, u, v) d x \\
\leq & \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{1}}+\frac{\varepsilon}{\lambda_{1}}\right)\|u\|_{0, K}^{2}+\frac{1}{2}\left(1-\frac{\mu}{\mu_{1}}+\frac{\varepsilon}{\mu_{1}}\right)\|v\|_{0, G}^{2}
\end{aligned}
$$

$$
\begin{equation*}
+M_{2}\|(u, v)\|+M_{1}|\Omega| . \tag{3.18}
\end{equation*}
$$

By $\lambda_{1}<\lambda, \mu_{1}<\mu$, letting $\varepsilon=\frac{1}{2} \min \left\{\lambda-\lambda_{1}, \mu-\mu_{1}\right\}$, from (3.18), it follows that $\mathcal{J}_{\lambda, \mu}(z) \rightarrow-\infty$, as $\|z\| \rightarrow \infty, z \in Z$.

For any $w=(u, v) \in Z^{\prime}$, from (2.6) and (3.17), we obtain

$$
\begin{aligned}
\mathcal{J}_{\lambda, \mu}(u, v) \geq & \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{2}}-\frac{\varepsilon}{\lambda_{1}}\right)\|u\|_{0, K}^{2}+\frac{1}{2}\left(1-\frac{\mu}{\mu_{2}}-\frac{\varepsilon}{\mu_{1}}\right)\|v\|_{0, G}^{2} \\
& -M_{2}\|(u, v)\|-M_{1}|\Omega|
\end{aligned}
$$

and consequently, for $\lambda<\lambda_{2}, \mu<\mu_{2}$, letting

$$
\varepsilon=\frac{1}{2} \min \left\{\lambda_{1}\left(1-\frac{\lambda}{\lambda_{2}}\right), \mu_{1}\left(1-\frac{\mu}{\mu_{2}}\right)\right\}
$$

it follows that $\mathcal{J}_{\lambda, \mu}$ is bounded below in Z^{\prime}. By the saddle point theorem, we obtain a critical point is a solution of problem (1.1). The proof is complete.

Proof of Theorem 1.2. The functional $\mathcal{J}_{\lambda, \mu}$ is coercive in $E_{0}, \mathcal{J}_{\lambda, \mu}$ is bounded from below on Z^{\prime} and there is a constant b, independent of λ, μ, such that $\inf _{Z^{\prime}} \mathcal{J}_{\lambda, \mu} \geq b$.

For $\lambda<\lambda_{1}$ and $\mu<\mu_{1}$, by the definition of λ_{1}, μ_{1} and (3.17), we obtain

$$
\begin{align*}
\mathcal{J}_{\lambda, \mu}(u, v)= & \frac{1}{2}\left(\|u\|_{0, K}^{2}+\|v\|_{0, G}^{2}\right)-\frac{\lambda}{2} \int_{\Omega}|u(x)|^{2} d x-\frac{\mu}{2} \int_{\Omega}|v(x)|^{2} d x \\
& -\int_{\Omega} F(x, u, v) d x \\
\geq & \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{1}}-\frac{\varepsilon}{\lambda_{1}}\right)\|u\|_{0, K}^{2}+\frac{1}{2}\left(1-\frac{\mu}{\mu_{1}}-\frac{\varepsilon}{\mu_{1}}\right)\|v\|_{0, G}^{2} \\
& -M_{2}\|(u, v)\|-M_{1}|\Omega| . \tag{3.19}
\end{align*}
$$

Set $\varepsilon=\frac{1}{2} \min \left\{\lambda_{1}-\lambda, \mu_{1}-\mu\right\}$. We have by (3.19) and the inequality $2\left(a^{2}+b^{2}\right) \geq$ $(a+b)^{2}$ that

$$
\mathcal{J}_{\lambda, \mu}(u, v) \geq \frac{1}{8} \min \left\{1-\frac{\lambda}{\lambda_{1}}, 1-\frac{\mu}{\mu_{1}}\right\}\|(u, v)\|^{2}-M_{2}\|(u, v)\|-M_{1}|\Omega|,
$$

which implies that $\mathcal{J}_{\lambda, \mu}$ is coercive in E_{0}.
For $(u, v) \in Z^{\prime}$, from (2.6) and (3.17), we have

$$
\begin{aligned}
\mathcal{J}_{\lambda, \mu}(u, v) \geq & \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{2}}-\frac{\varepsilon}{\lambda_{1}}\right)\|u\|_{0, K}^{2}+\frac{1}{2}\left(1-\frac{\mu}{\mu_{2}}-\frac{\varepsilon}{\mu_{1}}\right)\|v\|_{0, G}^{2} \\
& -M_{2}\|(u, v)\|-M_{1}|\Omega| \\
\geq & \frac{1}{2}\left(1-\frac{\lambda_{1}}{\lambda_{2}}-\frac{\varepsilon}{\lambda_{1}}\right)\|u\|_{0, K}^{2}+\frac{1}{2}\left(1-\frac{\mu_{1}}{\mu_{2}}-\frac{\varepsilon}{\mu_{1}}\right)\|v\|_{0, G}^{2} \\
& -M_{2}\|(u, v)\|-M_{1}|\Omega| .
\end{aligned}
$$

Putting $\varepsilon=\frac{1}{2} \min \left\{\lambda_{1}\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right), \mu_{1}\left(1-\frac{\mu_{1}}{\mu_{2}}\right)\right\}$, thus $\mathcal{J}_{\lambda, \mu}$ is coercive in Z^{\prime} and $\mathcal{J}_{\lambda, \mu}$ is bounded from below on Z^{\prime}, that is, there is a constant b, independent of λ, μ, such that $\inf _{Z^{\prime}} \mathcal{J}_{\lambda, \mu} \geq b$.

In the following, we will show that if $\lambda<\lambda_{1}$, and $\mu<\mu_{1}$ are sufficiently close to λ_{1}, μ_{1}, there exist $t_{1}^{-}<0<t_{1}^{+}, t_{2}^{-}<0<t_{2}^{+}$such that $\mathcal{J}_{\lambda, \mu}\left(t_{1}^{ \pm} \varphi_{1}, t_{2}^{ \pm} \psi_{1}\right)<b$. In fact, by Fatou's Lemma and condition (H2), there exist sufficiently large positive numbers t_{1}^{+}and t_{2}^{+}such that

$$
\begin{equation*}
\int_{\Omega} F\left(x, t_{1}^{+} e_{1}, t_{2}^{+} \omega_{1}\right) d x>-b+1 \tag{3.20}
\end{equation*}
$$

For $\lambda_{1}-\frac{\lambda_{1}}{\left(t_{1}^{+}\right)^{2}}<\lambda<\lambda_{1}$ and $\mu_{1}-\frac{\mu_{1}}{\left(t_{2}^{+}\right)^{2}}<\mu<\mu_{1}$, from (3.20), we have

$$
\begin{aligned}
\mathcal{J}_{\lambda, \mu}\left(t_{1}^{+} e_{1}, t_{2}^{+} \omega_{1}\right)= & \frac{\left(t_{1}^{+}\right)^{2}}{2}\left\|e_{1}\right\|_{0, K}^{2}+\frac{\left(t_{2}^{+}\right)^{2}}{2}\left\|\omega_{1}\right\|_{0, G}^{2}-\frac{\lambda\left(t_{1}^{+}\right)^{2}}{2} \int_{\Omega}\left|e_{1}\right|^{2} d x \\
& -\frac{\mu\left(t_{2}^{+}\right)^{2}}{2} \int_{\Omega}\left|\omega_{1}\right|^{2} d x-\int_{\Omega} F\left(x, t_{1}^{+} e_{1}, t_{2}^{+} \omega_{1}\right) d x \\
= & \frac{\left(t_{1}^{+}\right)^{2}}{2}\left\|e_{1}\right\|_{0, K}^{2}+\frac{\left(t_{2}^{+}\right)^{2}}{2}\left\|\omega_{1}\right\|_{0, G}^{2}-\frac{\lambda\left(t_{1}^{+}\right)^{2}}{2 \lambda_{1}}\left\|e_{1}\right\|_{0, K}^{2} \\
& -\frac{\mu\left(t_{2}^{+}\right)^{2}}{2 \mu_{1}}\left\|\omega_{1}\right\|_{0, G}^{2}-\int_{\Omega} F\left(x, t_{1}^{+} e_{1}, t_{2}^{+} \omega_{1}\right) d x \\
= & \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{1}}\right)\left(t_{1}^{+}\right)^{2}+\frac{1}{2}\left(1-\frac{\mu}{\mu_{1}}\right)\left(t_{2}^{+}\right)^{2} \\
& -\int_{\Omega} F\left(x, t_{1}^{+} e_{1}, t_{2}^{+} \omega_{1}\right) d x \\
< & 1-\int_{\Omega} F\left(x, t_{1}^{+} e_{1}, t_{2}^{+} \omega_{1}\right) d x<b .
\end{aligned}
$$

A similar condition holds for $t_{1}^{-}, t_{2}^{-}<0$.
If $\left\{z_{n}=\left(u_{n}, v_{n}\right)\right\}$ is a (PS) sequence of $\mathcal{J}_{\lambda, \mu}$, we get $\left\{\left(u_{n}, v_{n}\right)\right\}$ must be bounded, since $\mathcal{J}_{\lambda, \mu}$ is coercive. Then passing to a subsequence if necessary, there exists $z=(u, v) \in E_{0}$ such that $\left(u_{n}, v_{n}\right) \rightharpoonup(u, v)$ weakly in E_{0}. Thus, there exists a strictly decreasing subsequence $\epsilon_{n}, \lim _{n \rightarrow \infty} \epsilon_{n}=0$ such that

$$
\left|\mathcal{J}_{\lambda, \mu}^{\prime}\left(u_{n}, v_{n}\right)\left(u_{n}-u, 0\right)\right| \leq \epsilon_{n}\left\|\left(u_{n}-u, 0\right)\right\| .
$$

In particular

$$
\begin{align*}
& \mid \int_{\mathbb{R}^{2 n}}\left(u_{n}(x)-u_{n}(y)\right)\left(\left(u_{n}-u\right)(x)-\left(u_{n}-u\right)(y)\right) K(x-y) d x d y \\
& -\lambda \int_{\Omega} u_{n}\left(u_{n}-u\right) d x-\int_{\Omega} F_{u}\left(x, u_{n}, v_{n}\right)\left(u_{n}-u\right) d x \mid \leq \epsilon_{n}\left\|\left(u_{n}-u, 0\right)\right\| . \tag{3.22}
\end{align*}
$$

By Lemma 8 of [10], we know that $u_{n} \rightarrow u$ in $L^{2}(\Omega), v_{n} \rightarrow v$ in $L^{2}(\Omega)$. Thus
(3.23) $\lim _{n \rightarrow \infty} \int_{\Omega} u_{n}\left(u_{n}-u\right) d x \leq \lim _{n \rightarrow \infty}\left(\int_{\Omega} u_{n}^{2} d x\right)^{1 / 2}\left(\int_{\Omega}\left|u_{n}-u\right|^{2} d x\right)^{1 / 2}=0$.

Since the potential F satisfies (H1), it is easy to know that

$$
\begin{equation*}
\int_{\Omega} F_{u}\left(x, u_{n}, v_{n}\right)\left(u_{n}-u\right) d x \rightarrow 0 \tag{3.24}
\end{equation*}
$$

Combining (3.22) with (3.23) and (3.24) we obtain
(3.25) $\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{2 n}}\left(u_{n}(x)-u_{n}(y)\right)\left(\left(u_{n}-u\right)(x)-\left(u_{n}-u\right)(y)\right) K(x-y) d x d y=0$.

On the other hand, since

$$
\begin{aligned}
& \int_{\mathbb{R}^{2 n}}\left(u_{n}(x)-u_{n}(y)\right)(\varphi(x)-\varphi(y)) K(x-y) d x d y \\
\rightarrow & \int_{\mathbb{R}^{2 n}}(u(x)-u(y))(\varphi(x)-\varphi(y)) K(x-y) d x d y \quad \text { for any } \varphi \in X_{0}
\end{aligned}
$$

as $n \rightarrow+\infty$, we have
(3.26)

$$
\int_{\mathbb{R}^{2 n}}\left(\left(u_{n}-u\right)(x)-\left(u_{n}-u\right)(y)\right)(\varphi(x)-\varphi(y)) K(x-y) d x d y \rightarrow 0, \quad n \rightarrow \infty
$$

Let $\varphi=u$, then (3.26) reduces to
(3.27) $\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{2 n}}(u(x)-u(y))\left(\left(u_{n}-u\right)(x)-\left(u_{n}-u\right)(y)\right) K(x-y) d x d y=0$.

Adding (3.25) to (3.27), we conclude that
$0=\lim _{n \rightarrow \infty}\left[\int_{\mathbb{R}^{2 n}}\left(u_{n}(x)-u_{n}(y)\right)^{2} K(x-y) d x d y-\int_{\mathbb{R}^{2 N}}(u(x)-u(y))^{2} K(x-y) d x d y\right]$ which implies $\left\|u_{n}\right\|_{0, K}^{2} \rightarrow\|u\|_{0, K}^{2}$. So, $\left\|u_{n}\right\|_{0, K} \rightarrow\|u\|_{0, K}$.

Similarly we have $\left\|v_{n}\right\|_{0, G} \rightarrow\|v\|_{0, G}$. The uniform convexity of E_{0} yields that $\left\{z_{n}\right\}$ converges strongly to z in E_{0}. If $\lambda<\lambda_{1}, \mu<\mu_{1}$, the functional $\mathcal{J}_{\lambda, \mu}$ satisfies the (PS) condition. In addition, let

$$
\sum_{ \pm}=\left\{z \in E_{0}: z= \pm\left(t_{1} e_{1}, t_{2} \omega_{1}\right)+w \text { with } t_{1}, t_{2}>0 \text { and } w \in Z^{\prime}\right\}
$$

$\mathcal{J}_{\lambda, \mu}$ satisfies $(P C)_{c, \Sigma_{+}}$and $(P C)_{c, \Sigma_{-}}$for all $c<b$.
Let $\left\{z_{n}\right\} \subset \sum_{+}$and $\mathcal{J}_{\lambda, \mu}\left(z_{n}\right) \rightarrow c<b$ and $\mathcal{J}_{\lambda, \mu}^{\prime}\left(z_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $\mathcal{J}_{\lambda, \mu}$ is coercive and the potential F satisfies (H1), there is $z \in E_{0}$ such that $z_{n} \rightarrow z$ strongly in E_{0}. If $z \in \partial \sum_{+}=Z^{\prime}$, from $\inf _{Z^{\prime}} \mathcal{J}_{\lambda, \mu} \geq b$, we get $\mathcal{J}_{\lambda, \mu}\left(z_{n}\right) \rightarrow c \geq b$, which is a contradiction. Thus $z \in \sum_{+}$and $\mathcal{J}_{\lambda, \mu}$ satisfies the $(P C)_{c, \Sigma_{+}}$condition. In a similar way, we get that $(P C)_{c, \Sigma_{-}}$holds for all $c<b$.

If $\lambda<\lambda_{1}, \mu<\mu_{1}$ are sufficiently close to λ_{1}, μ_{1}, respectively, we obtain

$$
-\infty<\inf _{\sum_{ \pm}} \mathcal{J}_{\lambda, \mu}<b
$$

which implies that $\mathcal{J}_{\lambda, \mu}$ is bounded below in \sum_{+}. Consequently, according to Ekeland's variational principle, there exists $\left\{z_{n}\right\} \subset \sum_{+}$such that $\mathcal{J}_{\lambda, \mu}\left(z_{n}\right) \rightarrow$ $\inf _{\sum_{+}} \mathcal{J}_{\lambda, \mu}$ and $\mathcal{J}_{\lambda, \mu}^{\prime}\left(z_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $\mathcal{J}_{\lambda, \mu}$ satisfies $(P C)_{c, \Sigma_{+}}$for all $c<b$, there is $z^{+} \in \sum_{+}$such that $\mathcal{J}_{\lambda, \mu}\left(z^{+}\right)=\inf _{\sum_{+}} \mathcal{J}_{\lambda, \mu}$, i.e., the infimum is obtained in \sum_{+}. A similar conclusion holds in \sum_{-}. So $\mathcal{J}_{\lambda, \mu}$ has two distinct critical points, denoted by z^{+}, z^{-}.

As in [10], we can obtain the third critical point z of $\mathcal{J}_{\lambda, \mu}$ by applying Mountain pass theorem such that $\mathcal{J}_{\lambda, \mu}(z)=c \geq b$.

Acknowledgements. The author thanks the editor and reviewers for their very important and useful comments and suggestions. This work is supported by Natural Science Foundation of China (11571136 and 11271364).

References

[1] G. A. Afrouzi, S. Mahdavi, and Z. Naghizadeh, Existence of multiple solutions for a class of (p, q)-Laplacian systems, Nonlinear Anal. 72 (2010), no. 5, 2243-2250.
[2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
[3] C. Bai, Existence results for non-local operators of elliptic type, Nonlinear Anal. 83 (2013), 82-90.
[4] B. Barrios, E. Colorado, A. de Pablo, and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), no. 11, 6133-6162.
[5] K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, and Z. Vondracek, Potential Analysis of Stable Processes and Its Extensions, Lecture Notes in Math., vol. 1980, Springer, 2009.
[6] G. Molica Bisci, Fractional equations with bounded primitive, Appl. Math. Lett. 27 (2014), 53-58.
[7] L. A. Caffarelli, S. Salsa, and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), no. 2, 425-461.
[8] S. Dipierro and A. Pinamonti, A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian, J. Differential Equations 255 (2013), no. 1, 85-119.
[9] P. Drabek and Y. X. Huang, Bifurcation problems for the p-Laplacian in \mathbb{R}^{N}, Trans. Amer. Math. Soc. 349 (1977), no. 1, 171-188.
[10] E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573.
[11] M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal. 262 (2012), no. 5, 2379-2402.
[12] R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), no. 2, 887-898.
[13] , Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), no. 5, 2105-2137.
[14] J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations 36 (2011), no. 1-2, 21-41.
[15] B. Zhang, G. Molica Bisci, and R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity 28 (2015), no. 7, 2247-2264.

Chuanzhi Bai

Department of Mathematics
Huaiyin Normal University
Huaian, Jiangsu 223300, P. R. China
E-mail address: czbai8@sohu.com

