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MULTIPLICITY OF SOLUTIONS FOR A CLASS OF

NON-LOCAL ELLIPTIC OPERATORS SYSTEMS

Chuanzhi Bai

Abstract. In this paper, we investigate the existence and multiplicity of
solutions for systems driven by two non-local integrodifferential operators
with homogeneous Dirichlet boundary conditions. The main tools are the
Saddle point theorem, Ekeland’s variational principle and the Mountain
pass theorem.

1. Introduction

This paper is concerned with the following problem

(1.1)











− LKu = λu+ Fu(x, u, v) in Ω,

− LGv = µv + Fv(x, u, v) in Ω,

u = v = 0 in R
n \ Ω,

where Ω ⊂ R
n (n ≥ 2) is a bounded domain with smooth boundary ∂Ω, and

λ, µ are two positive parameters. F ∈ C1(Ω̄×R
2,R) satisfies some conditions

which will be stated later on, LK and LG are the non-local operators defined
by:

LKu(x) =

∫

Rn

(u(x+ y) + u(x− y)− 2u(x))K(y)dy, x ∈ R
n,

and

LGv(x) =

∫

Rn

(v(x + y) + v(x − y)− 2v(x))G(y)dy, x ∈ R
n,

respectively, here K,G : Rn \ {0} → (0,+∞) are two functions such that

(1.2) mK,mG ∈ L1(Rn), where m(x) = min{|x|2, 1}
there exist θ1, θ2 > 0 and s1, s2 ∈ (0, 1) such that

(1.3) K(x) ≥ θ1|x|−(n+2s1), G(x) ≥ θ2|x|−(n+2s2) for any x ∈ R
n \ {0}

(1.4) K(x) = K(−x), G(x) = G(−x) ∀x ∈ R
n \ {0}.
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A typical example for K and G is given by K(x) = |x|−(n+2s1) and G(x) =
|x|−(n+2s2). In this case LK and LG are the fractional Laplace operators
−(−∆)s1 and −(−∆)s2 , where −(−∆)s is defined by

−(−∆)su(x) =

∫

Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy, x ∈ R

n,

here s ∈ (0, 1) and n > 2s. The fractional Laplacian−(−∆)s is a classical linear
integro-differential operator of order 2s which gives the standard Laplacian
when s = 1.

Let XK be the linear space of Lebesgue measurable functions from R
n to R

such that the restriction to Ω of any function g in XK belongs to L2(Ω) and

the map (x, y) → (g(x)− g(y))
√

K(x− y) is in L2(R2n \ (CΩ× CΩ), dxdy),

where CΩ := R
n \ Ω. Moreover,

X0,K = {g ∈ XK : g = 0 a.e. in R
n \ Ω}.

Similarly, we can define the space X0,G. Let E0 = X0,K ×X0,G. We say that
(u, v) ∈ E0 is a weak solution of problem (1.1) if for every (ϕ, ψ) ∈ E0, one has

∫

R2n

(u(x)− u(y))(ϕ(x) − ϕ(y))K(x − y)dxdy

+

∫

R2n

(v(x) − v(y))(ψ(x) − ψ(y))G(x − y)dxdy

− λ

∫

Ω

u(x)ϕ(x)dx − µ

∫

Ω

v(x)ψ(x)dx −
∫

Ω

Fu(x, u(x), v(x))ϕ(x)dx

−
∫

Ω

Fv(x, u(x), v(x))ψ(x)dx = 0.

The fractional Laplacian and non-local operators of elliptic type arises in
both pure mathematical research and concrete applications, since these opera-
tors occur in a quite natural way in many different contexts. For an elementary
introduction to this topic, see [10] and the references therein. Recently, some
elliptic boundary problems driven by the non-local integrodifferential operator
LK have been studied in the works [3, 4, 6, 7, 8, 12, 13, 14].

In this paper, inspired by the ideas introduced in [1, 3, 12], we will show
how the multiplicity of solutions of problem (1.1) changes as λ and µ vary. To
the best of our knowledge, this is an interesting and new research topic for
non-local operators of elliptic type.

Denote by 0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · the eigenvalues of the following
non-local eigenvalue problem

(1.5)

{

−LKu = λu in Ω
u = 0 in R

n \ Ω.
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Similarly, denote by 0 < µ1 < µ2 ≤ · · · ≤ µk ≤ · · · the eigenvalues of the
following non-local eigenvalue problem

(1.6)

{

−LGv = µv in Ω
v = 0 in R

n \ Ω.
Our main results are given by the following theorems.

Theorem 1.1. Let F (x, 0, 0) be bounded for each x ∈ Ω. If F satisfies

(H1) lim
|u|→+∞

|Fu(x, u, v)|
|u| = 0, lim

|v|→+∞

|Fv(x, u, v)|
|v| = 0

uniformly in x ∈ Ω̄. Then for λ1 < λ < λ2 and µ1 < µ < µ2, problem (1.1)
has at least one solution.

Theorem 1.2. Let F (x, 0, 0) be bounded for each x ∈ Ω. Assume that the

nonlinearity F satisfies (H1) and

(H2) lim
|t1|,|t2|→+∞

F (x, t1e1, t2ω1) = +∞

uniformly in x ∈ Ω̄, where e1 is a normalized eigenfunction corresponding to

λ1 and ω1 is a normalized eigenfunction corresponding to µ1. Then for λ < λ1
and µ < µ1 sufficiently close to λ1 and µ1, problem (1.1) has at least three

solutions.

Remark 1.1. The case of λ1 <
λ2

2 is attainable. In fact, if K(x) = |x|−(n+2s1)

(s1 ∈ (0, 1), then −LK = (−∆)s1 . In [11], Kwaśnicki studied the asymptotic
behavior of the eigenvalues of the spectral problem for the one-dimensional
fractional Laplace operator (−∆)α/2 (α ∈ (0, 2)) in the interval D = (−1, 1),
from [11, Table 2], we know that eigenvalues λ1 <

λ2

2 for α > 1. If α → 2,

then the fractional Laplace operator (−∆)α/2 reduces to the Laplace operator
−∆. The eigenvalues λ1 and λ2 of the spectral problem for the two-dimensional
Laplace operator −∆ in the rectangle D = (0, a)× (0, b) (a > b > 0) had been
given as follows ([5], page 83):

λ1 =
π2

a2
+
π2

b2
, λ2 =

4π2

a2
+
π2

b2
.

Let a = 5 and b = 4, then

λ1 =
41

400
π2 <

1

2
· 89

400
π2 =

1

2
λ2.

2. Preliminaries

The space XK is endowed with the norm defined as

(2.1) ‖g‖K = ‖g‖L2(Ω) +

(
∫

Q

|g(x) − g(y)|2K(x− y)dxdy

)1/2

,

where Q = R
2n \O. Here O = (CΩ× CΩ) ⊂ R

2n and CΩ = R
n \Ω. It is easily

seen that ‖ · ‖K is a norm on XK (see, for instance, [12] for a proof).
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By [12], a sort of Poincaré-Sobolev inequality for functions in X0,K is given
as follows.

Lemma 2.1 ([12]). Suppose that K : Rn\{0} → (0,+∞) satisfies assumptions

(1.2)-(1.4). Then

(1) there exists a positive constant c1, depending only on n and s1, such that

for any u ∈ X0,K

‖u‖2
L

2∗s1 (Ω)
= ‖u‖2

L
2∗s1 (Rn)

≤ c1

∫

R2n

|u(x)− u(y)|2
|x− y|n+2s1

dxdy,

where 2∗s1 = 2n/(n− 2s1);
(2) there exits a constant C > 1, depending only on n, s1, θ1 and Ω, such

that for any u ∈ X0,K
∫

Q

|u(x)− u(y)|2K(x− y)dxdy ≤ ‖u‖2K ≤ C

∫

Q

|u(x)− u(y)|2K(x− y)dxdy,

that is

(2.2) ‖u‖X0,K =

(
∫

Q

|u(x)− u(y)|2K(x− y)dxdy

)1/2

is a norm on X0,K equivalent to the usual one defined in (2.1).

Lemma 2.2 ([12]). (X0,K , ‖ · ‖XK
) is a Hilbert space, with the scalar product

(2.3) 〈u, v〉X0,K =

∫

Q

(u(x)− u(y))(v(x) − v(y))K(x − y)dxdy.

Since v ∈ X0,K , we have v = 0 a.e. in R
n \ Ω. Thus the integrals in (2.2)

and in (2.3) can be extended to all R2n.

Remark 2.1. Similarly, we can define ‖u‖X0,G and 〈u, v〉X0,G if only replaced
K by G in Lemma 2.1 and Lemma 2.2 respectively. Moreover, there exists a
positive constant c2, depending only on n and s2, such that for any v ∈ X0,G

‖v‖2
L

2∗s2 (Ω)
= ‖v‖2

L
2∗s2 (Rn)

≤ c2

∫

R2n

|v(x)− v(y)|2
|x− y|n+2s2

dxdy,

where 2∗s2 = 2n/(n− 2s2).

Space E0 = X0,K × X0,G is the Cartesian product of two Hilbert spaces,
which is a reflexive Banach space endowed with the norm

‖(u, v)‖ = ‖u‖0,K + ‖v‖0,G

=

(
∫

Q

|u(x)− u(y)|2K(x− y)dxdy

)1/2

+

(
∫

Q

|v(x) − v(y)|2G(x− y)dxdy

)1/2

.

From [13, Proposition 9], we have:
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Lemma 2.3 (Eigenvalues and eigenfunctions of −LK). Let K : Rn \ {0} →
(0,+∞) be a function satisfying assumptions (1.2)-(1.4). Then

a)

λ1 = min
u∈X0,K\{0}

∫

R2n |u(x)− u(y)|2K(x− y)dxdy
∫

Ω |u(x)|2dx

= min
u∈X0,K , ‖u‖

L2(Ω)=1

∫

R2n

|u(x)− u(y)|2K(x− y)dxdy;(2.4)

b) there exists a non-negative function e1 ∈ X0,K , which is an eigenfunction

corresponding to λ1, attaining the minimum in (2.4), that is ‖e1‖L2(Ω) = 1 and

(2.5) λ1 =

∫

R2n

|e1(x) − e1(y)|2K(x− y)dxdy;

c)

λ2 = min
u∈〈e1〉⊥

∫

R2n |u(x)− u(y)|2K(x− y)dxdy
∫

Ω
|u(x)|2dx

= min
u∈〈e1〉⊥, ‖u‖

L2(Ω)=1

∫

R2n

|u(x)− u(y)|2K(x− y)dxdy.(2.6)

3. Main results

By [13] we know that (u, v) ∈ E0 is a weak solution of problem (1.1) is
equivalent to being a critical point of the functional

Jλ,µ(u, v) =
1

2

∫

R2n

|u(x)− u(y)|2K(x− y)dxdy

+
1

2

∫

R2n

|v(x) − v(y)|2G(x− y)dxdy

− λ

2

∫

Ω

|u(x)|2dx− µ

2

∫

Ω

|v(x)|2dx−
∫

Ω

F (x, u, v)dx.(3.1)

Since the potential F satisfies (H1), it follows that Jλ,µ ∈ C1(E,R).

Thanks to the fact that L2∗s1 (Ω) →֒ L2(Ω) is continuous, we get

(3.2) ‖u‖2L2(Ω) ≤ |Ω|(2
∗
s1

−2)/2∗s1 ‖u‖2
L

2∗s1 (Ω)
.

Using (1.3) and Lemma 2.1(1), we have

‖u‖
L

2∗s1 (Ω)
≤ √

c1

(
∫

R2n

|u(x)− u(y)|2
|x− y|n+2s1

dxdy

)1/2

≤
√

c1
θ1

(
∫

R2n

|u(x)− u(y)|2K(x− y)dxdy

)1/2

=

√

c1
θ1

‖u‖0,K.(3.3)
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Substituting (3.3) into (3.2), we get

(3.4) ‖u‖L2(Ω) ≤ |Ω|(2
∗
s1

−2)/2·2∗s1

√

c1
θ1

‖u‖0,K .

Similarly, we have

(3.5) ‖v‖L2(Ω) ≤ |Ω|(2
∗
s2

−2)/2·2∗s2

√

c2
θ2

‖v‖0,G.

The main results of Theorem 1.1 are proved by the saddle point theorem [9]
and those of Theorem 1.2 are based on Ekeland’s variational principle and the
Mountain pass theorem [2].

Proof Theorem 1.1. Let {zn} = {(un, vn)} ⊂ E0 satisfy

(3.6) Jλ,µ(zn) → c ∈ R, ‖J ′
λ,µ(zn)‖E∗

0
→ 0

as n → ∞. Firstly, we prove that {zn} in bounded in E0. From (H1) and the
continuity of the potential F , for any ε > 0, there exists a positive constant
Wε such that

(3.7)

∣

∣

∣

∣

∂F

∂u
(x, u, v)

∣

∣

∣

∣

≤ ε|u|+Wε,

∣

∣

∣

∣

∂F

∂v
(x, u, v)

∣

∣

∣

∣

≤ ε|v|+Wε

for all (x, u, v) ∈ Ω× R
2. Putting Z = 〈e1〉 × 〈ω1〉, and

Z ′ = {(u, v) ∈ E0 : u ∈ 〈e1〉⊥, v ∈ 〈ω1〉⊥}.
We can easily know that Z ′ is a complementary subspace of Z. Hence we have
the following direct sum

E0 = Z
⊕

Z ′.

Let zn = z−n + z+n ∈ E0, where z
−
n = (u−n , v

−
n ) ∈ Z, z+n = (u+n , v

+
n ) ∈ Z ′. For

large n, we obtain by (3.6) that
∣

∣

∣

∣

J ′
λ,µ(un, vn)

(

u+n
2
,
v+n
2

)∣

∣

∣

∣

=

∣

∣

∣

∣

1

2

∫

R2n

(un(x) − un(y))(u
+
n (x)− u+n (y))K(x− y)dxdy

+
1

2

∫

R2n

(vn(x)− vn(y))(v
+
n (x)− v+n (y))G(x − y)dxdy

− λ

2

∫

Ω

un(x)u
+
n (x)dx − µ

2

∫

Ω

vn(x)v
+
n (x)dx

−1

2

∫

Ω

Fu(x, un, vn)u
+
n (x)dx − 1

2

∫

Ω

Fv(x, un, vn)v
+
n (x)dx

∣

∣

∣

∣

≤
∥

∥

∥

∥

(

u+n
2
,
v+n
2

)∥

∥

∥

∥

.(3.8)
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On the other hand, by Claim 2 in Appendix A of [13], by (2.6), (3.4), (3.5) and
(3.7), we have

1

2

∫

R2n

(un(x)− un(y))(u
+
n (x) − u+n (y))K(x− y)dxdy

+
1

2

∫

R2n

(vn(x)− vn(y))(v
+
n (x)− v+n (y))G(x − y)dxdy

− λ

2

∫

Ω

un(x)u
+
n (x)dx − µ

2

∫

Ω

vn(x)v
+
n (x)dx

=
1

2
‖u+n ‖20,K +

1

2
‖v+n ‖20,G − λ

2

∫

Ω

|u+n (x)|2dx− µ

2

∫

Ω

|v+n (x)|2dx,(3.9)

∣

∣

∣

∣

∫

Ω

Fu(x, un, vn)u
+
n dx

∣

∣

∣

∣

≤
∫

Ω

(ǫ|un|+Wǫ)|u+n |dx

≤ 3ǫ

2
‖u+n ‖2L2(Ω) +

ǫ

2
‖u−n ‖2L2(Ω) +Wǫ|Ω|1/2‖u+n ‖L2(Ω)

≤ ǫ

2
|Ω|(2

∗
s1

−2)/2∗s1
c1
θ1

(3‖u+n ‖20,K + ‖u−n ‖20,K)

+Wǫ|Ω|(2
∗
s1

−1)/2∗s1

√

c1
θ1

‖u+n ‖0,K ,(3.10)

and
∣

∣

∣

∣

∫

Ω

Fv(x, un, vn)v
+
n dx

∣

∣

∣

∣

≤ ǫ

2
|Ω|(2

∗
s2

−2)/2∗s2
c2
θ2

(3‖v+n ‖20,G + ‖v−n ‖20,G)

+Wǫ|Ω|(2
∗
s2

−1)/2∗s2

√

c2
θ2

‖v+n ‖0,K .(3.11)

Substituting (3.9), (3.10) and (3.11) into (3.8), we obtain
∥

∥

∥

∥

(

u+n
2
,
v+n
2

)
∥

∥

∥

∥

≥ 1

2
‖u+n ‖20,K +

1

2
‖v+n ‖20,G − λ

2

∫

Ω

|u+n (x)|2dx− µ

2

∫

Ω

|v+n (x)|2dx

− 1

2

[

ǫ|Ω|(2
∗
s1

−2)/2∗s1
c1
θ1

(3‖u+n‖20,K + ‖u−n ‖20,K)

+Wǫ|Ω|(2
∗
s1

−1)/2∗s1

√

c1
θ1

‖u+n ‖0,K
]

− 1

2

[

ǫ|Ω|(2
∗
s2

−2)/2∗s2
c2
θ2

(3‖v+n ‖20,G + ‖v−n ‖20,G)

+Wǫ|Ω|(2
∗
s2

−1)/2∗s2

√

c2
θ2

‖v+n ‖0,G
]

.(3.12)

From (3.6), we have for large n that
∣

∣

∣

∣

J ′
λ,µ(un, vn)

(

u−n
2
,
v−n
2

)∣

∣

∣

∣
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=

∣

∣

∣

∣

1

2

∫

R2n

(un(x) − un(y))(u
−
n (x)− u−n (y))K(x− y)dxdy

+
1

2

∫

R2n

(vn(x)− vn(y))(v
−
n (x)− v−n (y))G(x − y)dxdy

− λ

2

∫

Ω

un(x)u
−
n (x)dx − µ

2

∫

Ω

vn(x)v
−
n (x)dx

−1

2

∫

Ω

Fu(x, un, vn)u
−
n (x)dx − 1

2

∫

Ω

Fv(x, un, vn)v
−
n (x)dx

∣

∣

∣

∣

≤
∥

∥

∥

∥

(

u−n
2
,
v−n
2

)∥

∥

∥

∥

.(3.13)

Similar to the proof of (3.9)-(3.11), we get by (3.13) that
∥

∥

∥

∥

(

u−n
2
,
v−n
2

)∥

∥

∥

∥

≥ λ

2

∫

Ω

|u−n (x)|2dx+
µ

2

∫

Ω

|v−n (x)|2dx− 1

2
‖u−n ‖20,K − 1

2
‖v−n ‖20,G

− 1

2

[

ǫ|Ω|(2
∗
s1

−2)/2∗s1
c1
θ1

(3‖u−n ‖20,K + ‖u+n ‖20,K)

+Wǫ|Ω|(2
∗
s1

−1)/2∗s1

√

c1
θ1

‖u−n ‖0,K
]

− 1

2

[

ǫ|Ω|(2
∗
s2

−2)/2∗s2
c2
θ2

(3‖v−n ‖20,G + ‖v+n ‖20,G)

+Wǫ|Ω|(2
∗
s2

−1)/2∗s2

√

c2
θ2

‖v−n ‖0,G
]

.(3.14)

Since

(‖u+n ‖0,K + ‖u−n ‖0,K)2 ≤ 2(‖u+n ‖20,K + ‖u−n ‖20,K)

= 2‖un‖20,K ,
and

(‖v+n ‖0,G + ‖v−n ‖0,G)2 ≤ 2(‖v+n ‖20,G + ‖v−n ‖20,G)
= 2‖vn‖20,G,

we have

‖(u+n , v+n )‖+ ‖(u−n , v−n )‖ = (‖u+n ‖0,K + ‖u−n ‖0,K) + (‖v+n ‖0,G + ‖v−n ‖0,G)
≤

√
2(‖un‖0,K + ‖vn‖0,G)

=
√
2‖(un, vn)‖.(3.15)

Thus, from (3.13)-(3.15), we obtain
√
2

2
‖(un, vn)‖

≥
∥

∥

∥

∥

(

u+n
2
,
v+n
2

)∥

∥

∥

∥

+

∥

∥

∥

∥

(

u−n
2
,
v−n
2

)∥

∥

∥

∥
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≥ 1

2
‖u+n ‖20,K − λ

2

∫

Ω

|u+n (x)|2dx+
1

2
‖v+n ‖20,G − µ

2

∫

Ω

|v+n (x)|2dx

+
λ

2

∫

Ω

|u−n (x)|2dx+
µ

2

∫

Ω

|v−n (x)|2dx− 1

2
‖u−n ‖20,K − 1

2
‖v−n ‖20,G

− 2ǫ|Ω|(2
∗
s1

−2)/2∗s1
c1
θ1

(‖u+n ‖20,K + ‖u−n ‖20,K)

− 1

2
Wǫ|Ω|(2

∗
s1

−1)/2∗s1

√

c1
θ1

(‖u+n ‖0,K + ‖u−n ‖0,K)

− 2ǫ|Ω|(2
∗
s2

−2)/2∗s2
c2
θ2

(‖v+n ‖20,G + ‖v−n ‖20,G)

− 1

2
Wǫ|Ω|(2

∗
s2

−1)/2∗s2

√

c2
θ2

(‖v+n ‖0,G + ‖v−n ‖0,G)

≥ 1

2

(

1− λ

λ2

)

‖u+n ‖20,K +
1

2

(

1− µ

µ2

)

‖v+n ‖20,G

+
1

2

(

λ

λ1
− 1

)

‖u−n ‖20,K +
1

2

(

µ

µ1
− 1

)

‖v−n ‖20,G

− 2ǫ|Ω|(2
∗
s1

−2)/2∗s1
c1
θ1

‖un‖20,K − 2ǫ|Ω|(2
∗
s2

−2)/2∗s2
c2
θ2

‖vn‖20,G

− 1

2
Wǫ max

{

|Ω|(2
∗
s1

−1)/2∗s1

√

c1
θ1
, |Ω|(2

∗
s2

−1)/2∗s2

√

c2
θ2

}√
2‖(un, vn)‖

≥ 1

2
min

{(

1− λ

λ2

)

,

(

λ

λ1
− 1

)

,

(

1− µ

µ2

)

,

(

µ

µ1
− 1

)}

(‖un‖20,K + ‖vn‖20,G)

− 2ǫmax

{

|Ω|(2
∗
s1

−2)/2∗s1
c1
θ1
, |Ω|(2

∗
s2

−2)/2∗s2
c2
θ2

}

(‖un‖20,K + ‖vn‖20,G)

−
√
2

2
Wǫ max

{

|Ω|(2
∗
s1

−1)/2∗s1

√

c1
θ1
, |Ω|(2

∗
s2

−1)/2∗s2

√

c2
θ2

}

‖(un, vn)‖

≥ 1

4
min

{(

1− λ

λ2

)

,

(

λ

λ1
− 1

)

,

(

1− µ

µ2

)

,

(

µ

µ1
− 1

)}

‖(un, vn)‖2

− 2ǫmax

{

|Ω|(2
∗
s1

−2)/2∗s1
c1
θ1
, |Ω|(2

∗
s2

−2)/2∗s2
c2
θ2

}

‖(un, vn)‖2

−
√
2

2
Wǫ max

{

|Ω|(2
∗
s1

−1)/2∗s1

√

c1
θ1
, |Ω|(2

∗
s2

−1)/2∗s2

√

c2
θ2

}

‖(un, vn)‖.(3.16)

So {zn} is bounded in E0 by λ1 < λ < λ2, µ1 < µ < µ2, and ǫ sufficiently
small. Similar to the proof of Step 2 of Proposition 2 in [15], we can obtain
that {zn} has a convergent subsequence. So, the functional Jλ,µ satisfies the
(PS) condition. In the following, we will show that the functional Jλ,µ has the
geometry of the saddle point theorem.
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Since F (x, 0, 0) is bounded on Ω, there exists a constant M1 > 0 such that
|F (x, 0, 0)| ≤M1 for any x ∈ Ω. From (3.7), we obtain

|F (x, u, v)| =
∣

∣

∣

∣

∫ u

0

∂F

∂s
(x, s, v)ds+ F (x, 0, v)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ u

0

∂F

∂s
(x, s, v)ds+

∫ v

0

∂F

∂s
(x, 0, s)ds+ F (x, 0, 0)

∣

∣

∣

∣

≤
∫ |u|

0

(ε|s|+Wε)ds+

∫ |v|

0

(ε|s|+Wε)ds+M1

=
ε

2
(u2 + v2) +Wε(|u|+ |v|) +M1.

Thus, By (3.4), (3.5) and Hölder’s inequality, we have
∣

∣

∣

∣

∫

Ω

F (x, u, v)dx

∣

∣

∣

∣

≤
∫

Ω

|F (x, u, v)|dx

≤ ε

2

(
∫

Ω

u2dx+

∫

Ω

v2dx

)

+Wε|Ω|1/2
[

(
∫

Ω

u2dx

)1/2

+

(
∫

Ω

v2dx

)1/2
]

+M1|Ω|

≤ ε

2λ1

∫

Q

|u(x)− u(y)|2K(x− y)dxdy

+
ε

2µ1

∫

Q

|v(x) − v(y)|2G(x− y)dxdy

+Wε

[

|Ω|(2
∗
s1

−1)/2∗s1

√

c1
θ1

‖u‖0,K + |Ω|(2
∗
s2

−1)/2∗s2

+

√

c2
θ2

‖v‖0,G
]

+M1|Ω|

≤ ε

2λ1
‖u‖20,K +

ε

2µ1
‖v‖20,G +M2(‖u‖0,K + ‖v‖0,G) +M1|Ω|,(3.17)

where M2 = max{Wε|Ω|(2
∗
s1

−1)/2∗s1

√

c1
θ1
, Wε|Ω|(2

∗
s2

−1)/2∗s2

√

c2
θ2
}.

For any z = (u, v) ∈ Z, we get from (3.17) and Lemma 2.3(b) that

Jλ,µ(u, v) =
1

2
(‖u‖20,K + ‖v‖20,G)−

λ

2

∫

Ω

|u(x)|2dx

− µ

2

∫

Ω

|v(x)|2dx−
∫

Ω

F (x, u, v)dx

=
1

2

(

1− λ

λ1

)

‖u‖20,K +
1

2

(

1− µ

µ1

)

‖v‖20,G −
∫

Ω

F (x, u, v)dx

≤ 1

2

(

1− λ

λ1
+

ε

λ1

)

‖u‖20,K +
1

2

(

1− µ

µ1
+

ε

µ1

)

‖v‖20,G



MULTIPLICITY OF SOLUTIONS FOR A CLASS 725

+M2‖(u, v)‖+M1|Ω|.(3.18)

By λ1 < λ, µ1 < µ, letting ε = 1
2 min{λ − λ1, µ − µ1}, from (3.18), it follows

that Jλ,µ(z) → −∞, as ‖z‖ → ∞, z ∈ Z.
For any w = (u, v) ∈ Z ′, from (2.6) and (3.17), we obtain

Jλ,µ(u, v) ≥
1

2

(

1− λ

λ2
− ε

λ1

)

‖u‖20,K +
1

2

(

1− µ

µ2
− ε

µ1

)

‖v‖20,G
−M2‖(u, v)‖ −M1|Ω|

and consequently, for λ < λ2, µ < µ2, letting

ε =
1

2
min

{

λ1

(

1− λ

λ2

)

, µ1

(

1− µ

µ2

)}

,

it follows that Jλ,µ is bounded below in Z ′. By the saddle point theorem, we
obtain a critical point is a solution of problem (1.1). The proof is complete. �

Proof of Theorem 1.2. The functional Jλ,µ is coercive in E0, Jλ,µ is bounded
from below on Z ′ and there is a constant b, independent of λ, µ, such that
infZ′ Jλ,µ ≥ b.

For λ < λ1 and µ < µ1, by the definition of λ1, µ1 and (3.17), we obtain

Jλ,µ(u, v) =
1

2
(‖u‖20,K + ‖v‖20,G)−

λ

2

∫

Ω

|u(x)|2dx− µ

2

∫

Ω

|v(x)|2dx

−
∫

Ω

F (x, u, v)dx

≥ 1

2

(

1− λ

λ1
− ε

λ1

)

‖u‖20,K +
1

2

(

1− µ

µ1
− ε

µ1

)

‖v‖20,G
−M2‖(u, v)‖ −M1|Ω|.(3.19)

Set ε = 1
2 min{λ1−λ, µ1−µ}. We have by (3.19) and the inequality 2(a2+b2) ≥

(a+ b)2 that

Jλ,µ(u, v) ≥
1

8
min

{

1− λ

λ1
, 1− µ

µ1

}

‖(u, v)‖2 −M2‖(u, v)‖ −M1|Ω|,

which implies that Jλ,µ is coercive in E0.
For (u, v) ∈ Z ′, from (2.6) and (3.17), we have

Jλ,µ(u, v) ≥
1

2

(

1− λ

λ2
− ε

λ1

)

‖u‖20,K +
1

2

(

1− µ

µ2
− ε

µ1

)

‖v‖20,G
−M2‖(u, v)‖ −M1|Ω|

≥ 1

2

(

1− λ1
λ2

− ε

λ1

)

‖u‖20,K +
1

2

(

1− µ1

µ2
− ε

µ1

)

‖v‖20,G
−M2‖(u, v)‖ −M1|Ω|.
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Putting ε = 1
2 min

{

λ1

(

1− λ1

λ2

)

, µ1

(

1− µ1

µ2

)}

, thus Jλ,µ is coercive in Z ′ and

Jλ,µ is bounded from below on Z ′, that is, there is a constant b, independent
of λ, µ, such that infZ′ Jλ,µ ≥ b.

In the following, we will show that if λ < λ1, and µ < µ1 are sufficiently close
to λ1, µ1, there exist t

−
1 < 0 < t+1 , t

−
2 < 0 < t+2 such that Jλ,µ(t

±
1 ϕ1, t

±
2 ψ1) < b.

In fact, by Fatou’s Lemma and condition (H2), there exist sufficiently large
positive numbers t+1 and t+2 such that

(3.20)

∫

Ω

F (x, t+1 e1, t
+
2 ω1)dx > −b+ 1.

For λ1 − λ1

(t+1 )2
< λ < λ1 and µ1 − µ1

(t+2 )2
< µ < µ1, from (3.20), we have

Jλ,µ(t
+
1 e1, t

+
2 ω1) =

(t+1 )
2

2
‖e1‖20,K +

(t+2 )
2

2
‖ω1‖20,G − λ(t+1 )

2

2

∫

Ω

|e1|2dx

− µ(t+2 )
2

2

∫

Ω

|ω1|2dx−
∫

Ω

F (x, t+1 e1, t
+
2 ω1)dx

=
(t+1 )

2

2
‖e1‖20,K +

(t+2 )
2

2
‖ω1‖20,G − λ(t+1 )

2

2λ1
‖e1‖20,K

− µ(t+2 )
2

2µ1
‖ω1‖20,G −

∫

Ω

F (x, t+1 e1, t
+
2 ω1)dx

=
1

2

(

1− λ

λ1

)

(t+1 )
2 +

1

2

(

1− µ

µ1

)

(t+2 )
2

−
∫

Ω

F (x, t+1 e1, t
+
2 ω1)dx

< 1−
∫

Ω

F (x, t+1 e1, t
+
2 ω1)dx < b.(3.21)

A similar condition holds for t−1 , t
−
2 < 0.

If {zn = (un, vn)} is a (PS) sequence of Jλ,µ, we get {(un, vn)} must be
bounded, since Jλ,µ is coercive. Then passing to a subsequence if necessary,
there exists z = (u, v) ∈ E0 such that (un, vn) ⇀ (u, v) weakly in E0. Thus,
there exists a strictly decreasing subsequence ǫn, limn→∞ ǫn = 0 such that

|J ′
λ,µ(un, vn)(un − u, 0)| ≤ ǫn‖(un − u, 0)‖.

In particular

∣

∣

∣

∣

∫

R2n

(un(x)− un(y))((un − u)(x) − (un − u)(y))K(x− y)dxdy

−λ
∫

Ω

un(un − u)dx−
∫

Ω

Fu(x, un, vn)(un − u)dx

∣

∣

∣

∣

≤ ǫn‖(un − u, 0)‖.(3.22)
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By Lemma 8 of [10], we know that un → u in L2(Ω), vn → v in L2(Ω). Thus

(3.23) lim
n→∞

∫

Ω

un(un−u)dx ≤ lim
n→∞

(
∫

Ω

u2ndx

)1/2 (∫

Ω

|un − u|2dx
)1/2

= 0.

Since the potential F satisfies (H1), it is easy to know that

(3.24)

∫

Ω

Fu(x, un, vn)(un − u)dx→ 0.

Combining (3.22) with (3.23) and (3.24) we obtain

(3.25) lim
n→∞

∫

R2n

(un(x)−un(y))((un−u)(x)− (un−u)(y))K(x− y)dxdy = 0.

On the other hand, since
∫

R2n

(un(x) − un(y))(ϕ(x) − ϕ(y))K(x − y)dxdy

→
∫

R2n

(u(x) − u(y))(ϕ(x) − ϕ(y))K(x− y)dxdy for any ϕ ∈ X0

as n→ +∞, we have
(3.26)
∫

R2n

((un − u)(x) − (un − u)(y))(ϕ(x) − ϕ(y))K(x− y)dxdy → 0, n→ ∞.

Let ϕ = u, then (3.26) reduces to

(3.27) lim
n→∞

∫

R2n

(u(x)− u(y))((un − u)(x) − (un − u)(y))K(x− y)dxdy = 0.

Adding (3.25) to (3.27), we conclude that

0 = lim
n→∞

[
∫

R2n

(un(x)− un(y))
2K(x− y)dxdy −

∫

R2N

(u(x)− u(y))2K(x− y)dxdy

]

which implies ‖un‖20,K → ‖u‖20,K. So, ‖un‖0,K → ‖u‖0,K .

Similarly we have ‖vn‖0,G → ‖v‖0,G. The uniform convexity of E0 yields
that {zn} converges strongly to z in E0. If λ < λ1, µ < µ1, the functional Jλ,µ

satisfies the (PS) condition. In addition, let
∑

±

= {z ∈ E0 : z = ±(t1e1, t2ω1) + w with t1, t2 > 0 and w ∈ Z ′}.

Jλ,µ satisfies (PC)c,
∑

+
and (PC)c,

∑
−
for all c < b.

Let {zn} ⊂ ∑

+ and Jλ,µ(zn) → c < b and J ′
λ,µ(zn) → 0 as n → ∞.

Since Jλ,µ is coercive and the potential F satisfies (H1), there is z ∈ E0 such
that zn → z strongly in E0. If z ∈ ∂

∑

+ = Z ′, from infZ′ Jλ,µ ≥ b, we get
Jλ,µ(zn) → c ≥ b, which is a contradiction. Thus z ∈ ∑

+ and Jλ,µ satisfies
the (PC)c,

∑
+
condition. In a similar way, we get that (PC)c,

∑
−
holds for all

c < b.
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If λ < λ1, µ < µ1 are sufficiently close to λ1, µ1, respectively, we obtain

−∞ < inf∑
±

Jλ,µ < b,

which implies that Jλ,µ is bounded below in
∑

+. Consequently, according to
Ekeland’s variational principle, there exists {zn} ⊂ ∑

+ such that Jλ,µ(zn) →
inf∑

+
Jλ,µ and J ′

λ,µ(zn) → 0 as n→ ∞. Since Jλ,µ satisfies (PC)c,
∑

+
for all

c < b, there is z+ ∈
∑

+ such that Jλ,µ(z
+) = inf∑

+
Jλ,µ, i.e., the infimum is

obtained in
∑

+. A similar conclusion holds in
∑

−. So Jλ,µ has two distinct

critical points, denoted by z+, z−.
As in [10], we can obtain the third critical point z of Jλ,µ by applying

Mountain pass theorem such that Jλ,µ(z) = c ≥ b. �
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