• 제목/요약/키워드: vapor-deposition

검색결과 2,864건 처리시간 0.033초

화학증착법에 의한 여러 가지 강들위에 증착된 TiC의 결정학적 특성 (The Crystallographic Properties of TiC Deposited on Different Substrate Steel by Chemical VaporDeposition)

  • 윤순길;김호기
    • 한국세라믹학회지
    • /
    • 제24권6호
    • /
    • pp.519-526
    • /
    • 1987
  • TiC was deposited onto several substrate steels by the Chemical Vapor Deposition technique from TiCl4-CH4-H2 gas mixtures in the horizontal resistance furnace. Deposition rates and morphologies of the coatings were investigated with the carbon contents. Deposition thickness increased linearly with the deposition time in the Presence of CH4 gas. The various interlayers of coating by EDS and X-ray Diffraction were proved as Cr7C3 and Fe3C. Chromium contents did not affect the preferred orientation of TiC deposit. The deposition was controlled by a mass transport and a surface reaction in case of 1 wt% C-5.25 wt% Cr steel irrespective of deposition temperature.

  • PDF

화학증착법에 의한 $ZrO_2$ 박막의 제조 및 반응변수에 따른 증착특성 (The Fabrication of the $ZrO_2$ Thin Film by Chemical Vapor Deposition and the Effect of the Reaction Parameters on the Deposition Characteristics)

  • 최준후;김호기
    • 한국세라믹학회지
    • /
    • 제28권1호
    • /
    • pp.1-10
    • /
    • 1991
  • Zirconium dioxide(ZrO2) thin films have been deposited by chemical vapor deposition technique involving the application of gas mixture of ZrCl4, and H2O into silicon wafers. The relationships between the deposition rate and various reaction parameters such as the deposition time, the gas flow rate, the deposition temperature, and the composition of reactant gases were studied. The film was identified as nearly stoichiometric monoclinic ZrO2. The apparent activation energy is about 19Kcal/mole at surface chemical reaction controlled region. The deposition rate is mainly influenced by the H2O-forming reacting between CO2 and H2.

  • PDF

Enhanced Control of OLED Deposition Processes by OVPD(R)

  • Schwambera, M.;Meyer, N.;Keiper, D.;Heuken, M.;Hartmann, S.;Kowalsky, W.;Farahzadi, A.;Niyamakom, P.;Beigmohamadi, M.;Wuttig, M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.336-339
    • /
    • 2007
  • The enhanced control of OLED deposition processes by Organic Vapor Phase Deposition $(OVPD^{(R)})$ is discussed. $OVPD^{(R)}$ opens a wide space of process control parameters. It allows the accurate and individual control of deposition layer properties like morphology and precise mixing of multi component layers (co-deposition) in comparison to conventional deposition manufacturing processes like e. g. VTE (vacuum thermal evaporation).

  • PDF

Substrate Temperature Dependence of Microcrystalline Silicon Thin Films by Combinatorial CVD Deposition

  • Kim, Yeonwon
    • 한국표면공학회지
    • /
    • 제48권3호
    • /
    • pp.126-130
    • /
    • 2015
  • A high-pressure depletion method using plasma chemical vapor deposition (CVD) is often used to deposit hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films of a low defect density at a high deposition rate. To understand proper deposition conditions of ${\mu}c-Si:H$ films for a high-pressure depletion method, Si films were deposited in a combinatorial way using a multi-hollow discharge plasma CVD method. In this paper the substrate temperature dependence of ${\mu}c-Si:H$ film properties are demonstrated. The higher substrate temperature brings about the higher deposition rate, and the process window of device quality ${\mu}c-Si:H$ films becomes wider until $200^{\circ}C$. This is attributed to competitive reactions between Si etching by H atoms and Si deposition.

플라즈마 화학기상증착법으로 성장시킨 탄소나노튜브의 미세구조 분석 (Microstructure Analysis of Carbon Nanotubes Grown by Plasma Enhanced Chemical Vapor Deposition)

  • 윤종성;윤존도;박종봉;박경수
    • 한국재료학회지
    • /
    • 제15권4호
    • /
    • pp.246-251
    • /
    • 2005
  • Plasma enhanced chemical vapor deposition(PE-CVD) method has an advantage in synthesizing carbon nanotubes(CNTs) at lower temperature compared with thermal enhanced chemical vapor deposition(TE-CVD) method. In this study, CNTs was prepared by using PE-CVD method. The growth rate of CNT was faster more than 100 times on using Invar alloy than iron as catalyst. It was found that chrome silicide was formed at the interface between chrome layer and silicon substrate which should be considered in designing process. Nanoparticles of Invar catalyst were found oxidized on their surfaces with a depth of 10 m. Microstructure was analyzed by scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray spectrometry. Based on the result of analysis, growth mechanism at an initial stage was suggested.

$C_{x}F_{y}$ Polymer Film Deposition in rf and dc $C_{7}F_{16}$ Vapor Plasmas

  • Sakai, Y.;Akazawa, M.;Sakai, Yosuke;Sugawara, H.;Tabata, M.;Lungu, C.P.;Lungu, A.M.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2001
  • $C_{x}F_{y}$ polymer film was deposited in rf and dc Fluorinert vapor ($C_{7}F_{16}$) plasmas. In the plasma phase, the spatial distribution of optical emission spectra and the temporal concentration of decomposed species were monitored, and kinetics of the $C_{7}F_{16}$ decomposition process was discussed. Deposition of $C_{x}F_{y}$ film has been tried on substrates of stainless steel, glass, molybdenum and silicon wafers at room temperature in the vapor pressures of 40 and 100 Pa. The films deposited in the rf plasma showed excellent electrical properties as an insulator for multi-layered interconnection of deep-submicron LSI, i.e. the low dielectric constant ∼2.0, the dielectric strength ∼2 MV/cm and the high deposition rate ∼100nm/min at 100W input power.

  • PDF

Chemical Vapor Deposition of β-LiGaO2 Films on Si(100) Using a Novel Single Precursor

  • Sung, Myung M.;Kim, Chang G.;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권4호
    • /
    • pp.480-484
    • /
    • 2004
  • $LiGaO_2$ films have been grown on Si (100) substrates using a new single precursor $[Li(OCH_2CH_2OCH_3)_2-Ga(CH_3)_2]_2$ under high vacuum conditions $(5{\times}10^{-6}Torr)$. The $[Li(OCH_2CH_2OCH_3)_2Ga(CH_3)_2]_2$ was synthe-sized and characterized by using spectroscopic methods and single-crystal X-ray diffraction analysis. The chemical composition, crystalline structure, and morphology of the deposited films were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, and scanning electron microscopy. The results show that polycrystalline $LiGaO_2$ films preferentially oriented in the [010] direction can be deposited on Si (100) at 500-550$^{\circ}C$ by metal organic chemical vapor deposition (MOCVD). The single precursor $[LiOCH_2CH_2OCH_3)_2-Ga(CH_3)_2]_2$ has been found suitable for chemical vapor deposition of $LiGaO_2$ thin films on Si substrates.

Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권3호
    • /
    • pp.148-151
    • /
    • 2013
  • The control of Ga doping in ZnO nanowires (NWs) by physical vapor deposition has been implemented and characterized. Various Ga-doped ZnO NWs were grown using the vapor-liquid-solid (VLS) method, with Au catalyst on c-plane sapphire substrate by hot-walled pulsed laser deposition (HW-PLD), one of the physical vapor deposition methods. The structural, optical and electrical properties of Ga-doped ZnO NWs have been systematically analyzed, by changing Ga concentration in ZnO NWs. We observed stacking faults and different crystalline directions caused by increasing Ga concentration in ZnO NWs, using SEM and HR-TEM. A $D^0X$ peak in the PL spectra of Ga doped ZnO NWs that is sharper than that of pure ZnO NWs has been clearly observed, which indicated the substitution of Ga for Zn. The electrical properties of controlled Ga-doped ZnO NWs have been measured, and show that the conductance of ZnO NWs increased up to 3 wt% Ga doping. However, the conductance of 5 wt% Ga doped ZnO NWs decreased, because the mean free path was decreased, according to the increase of carrier concentration. This control of the structural, optical and electrical properties of ZnO NWs by doping, could provide the possibility of the fabrication of various nanowire based electronic devices, such as nano-FETs, nano-inverters, nano-logic circuits and customized nano-sensors.

Synthesis and Characterization of Carbon nanofibers on Co and Cu Catalysts by Chemical Vapor Deposition

  • Park, Eun-Sil;Kim, Jong-Won;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1687-1691
    • /
    • 2014
  • This study reports on the synthesis of carbon nanofibers via chemical vapor deposition using Co and Cu as catalysts. In order to investigate the suitability of their catalytic activity for the growth of nanofibers, we prepared catalysts for the synthesis of carbon nanofibers with Cobalt nitrate and Copper nitrate, and found the optimum concentration of each respective catalyst. Then we made them react with Aluminum nitrate and Ammonium Molybdate to form precipitates. The precipitates were dried at a temperature of $110^{\circ}C$ in order to be prepared into catalyst powder. The catalyst was sparsely and thinly spread on a quartz tube boat to grow carbon nanofibers via thermal chemical vapor deposition. The characteristics of the synthesized carbon nanofibers were analyzed through SEM, EDS, XRD, Raman, XPS, and TG/DTA, and the specific surface area was measured via BET. Consequently, the characteristics of the synthesized carbon nanofibers were greatly influenced by the concentration ratio of metal catalysts. In particular, uniform carbon nanofibers of 27 nm in diameter grew when the concentration ratio of Co and Cu was 6:4 at $700^{\circ}C$ of calcination temperature; carbon nanofibers synthesized under such conditions showed the best crystallizability, compared to carbon nanofibers synthesized with metal catalysts under different concentration ratios, and revealed 1.26 high amorphicity as well as $292m^2g^{-1}$ high specific surface area.

Vapor Deposition Polymerization 방법을 이용한 유기 박막 트렌지스터의 제작 (Fabrication of Organic Thin-Film Transistor Using Vapor Deposition Polymerization Method)

  • 표상우;김준호;김정수;심재훈;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.190-193
    • /
    • 2002
  • The processing technology of organic thin-film transistors (Ons) performances have improved fur the last decade. Gate insulator layer has generally used inorganic layer, such as silicon oxide which has properties of a low electrical conductivity and a high breakdown field. However, inorganic insulating layers, which are formed at high temperature, may affect other layers termed on a substrate through preceding processes. On the other hand, organic insulating layers, which are formed at low temperature, dose not affect pre-process. Known wet-processing methods for fabricating organic insulating layers include a spin coating, dipping and Langmuir-Blodgett film processes. In this paper, we propose the new dry-processing method of organic gate dielectric film in field-effect transistors. Vapor deposition polymerization (VDP) that is mainly used to the conducting polymers is introduced to form the gate dielectric. This method is appropriate to mass production in various end-user applications, for example, flat panel displays, because it has the advantages of shadow mask patterning and in-situ dry process with flexible low-cost large area displays. Also we fabricated four by four active pixels with all-organic thin-film transistors and phosphorescent organic light emitting devices.

  • PDF