Browse > Article
http://dx.doi.org/10.4313/TEEM.2013.14.3.148

Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition  

Lee, Sang Yeol (Department of Semiconductor Engineering, Cheongju University)
Publication Information
Transactions on Electrical and Electronic Materials / v.14, no.3, 2013 , pp. 148-151 More about this Journal
Abstract
The control of Ga doping in ZnO nanowires (NWs) by physical vapor deposition has been implemented and characterized. Various Ga-doped ZnO NWs were grown using the vapor-liquid-solid (VLS) method, with Au catalyst on c-plane sapphire substrate by hot-walled pulsed laser deposition (HW-PLD), one of the physical vapor deposition methods. The structural, optical and electrical properties of Ga-doped ZnO NWs have been systematically analyzed, by changing Ga concentration in ZnO NWs. We observed stacking faults and different crystalline directions caused by increasing Ga concentration in ZnO NWs, using SEM and HR-TEM. A $D^0X$ peak in the PL spectra of Ga doped ZnO NWs that is sharper than that of pure ZnO NWs has been clearly observed, which indicated the substitution of Ga for Zn. The electrical properties of controlled Ga-doped ZnO NWs have been measured, and show that the conductance of ZnO NWs increased up to 3 wt% Ga doping. However, the conductance of 5 wt% Ga doped ZnO NWs decreased, because the mean free path was decreased, according to the increase of carrier concentration. This control of the structural, optical and electrical properties of ZnO NWs by doping, could provide the possibility of the fabrication of various nanowire based electronic devices, such as nano-FETs, nano-inverters, nano-logic circuits and customized nano-sensors.
Keywords
ZnO; Nanowire; Doped nanowire;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nature Mater. 2005, 4, 455 [DOI: http://dx.doi.org/10.1038/nmat1387].   DOI   ScienceOn
2 Xiong, G.; Wilkinson, J.; Mischuck, B.; Tuzemen, S.; Ucer, K. B.; Williams, R. T. Appl. Phys. Lett. 2002, 70.1195.
3 Ma, Y.; Du, G. T.; Yang, S. R.; Li, Z. T.; Zhao, B. J.; Yang, X. T.; Yang, T. P.; Zhang, Y. T.; Liu, D. L. J. Appl. Phys. 2004, 95, 6268.   DOI   ScienceOn
4 Jiang, X.; Wong, F. L.; Fung, M. K.; Lee, S. T. Appl. Phys. Lett. 2003, 83, 1875 [DOI: http://dx.doi.org/10.1063/1.1605805].   DOI   ScienceOn
5 Yu, Z. G.; Wu, P.; Gong, H. Appl. Phys. Lett. 2006, 88, 132114 [DOI: http://dx.doi.org/10.1063/1.2174089].   DOI   ScienceOn
6 Kang, H. S.; Ahn, B. D.; Kim, J. H.; Kim, G. H.; Lim, S. H.; Chang, H. W.; Lee, S. Y. Appl. Phys. Lett. 2006, 88, 202108 [DOI: http://dx.doi.org/10.1063/1.2197317].   DOI   ScienceOn
7 Kim, K.; Debnath, P. C.; Park, D.-H.; Kim, S. S.; Lee, S. Y. Appl. Phys. Lett. 2010, 96, 083103 [DOI: http://dx.doi.org/10.1063/1.3290247].   DOI   ScienceOn
8 Zou, C. W.; Gao, W. Trans. Electr. Electron. Mater. 2010, 11, 1 [DOI: http://dx.doi.org/10.4313/TEEM.2010.11.1.001].   DOI   ScienceOn
9 Yuan, G. D.; Zhang, W. J.; Jie, J. S.; Fan, X.; Tang, J. X.; Shafiq, I.; Ye, Z. Z.; Lee, C. S.; Lee, S. T. Adv. Mater. 2008, 20, 168 [DOI:http://dx.doi.org/10.1002/adma.200701377].   DOI   ScienceOn
10 Sakurai, M.; Wang, Y. G.; Uemura, T.; Aono, M. Nanotechnology. 2009, 20, 155203 [DOI: http://dx.doi.org/10.1088/0957-4484/20/15/155203].   DOI   ScienceOn
11 Terasako, T.; Shirakata, S. Jpn. J. Appl. Phys. 2005, 44, L1410-L1413 [DOI: http://dx.doi.org/10.1143/JJAP.44.L1410].   DOI   ScienceOn
12 Lee, S. Y.; Song, Y. W.; Jeon, K. A. J. Cryst. Growth. 2008, 310, 4477 [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2008.07.041].   DOI   ScienceOn
13 Song, Y. W.; Lee, S. Y. Thin Solid Films. 2008, 518, 1323.
14 Goris, L.; Noriega, R.; Donovan, M.; Jokisaari, J.; Kusinski, G.; Salleo, A. J. Electron. Mater. 2009, 38, 586 [DOI: http://dx.doi.org/10.1007/s11664-008-0618-x].   DOI
15 Burstein, E. Phys. Rev. 1954, 93, 632 [DOI: http://dx.doi.org/10.1103/PhysRev.93.632].   DOI
16 Moss, T. S. Proc. Phys. Soc. Lond. 1954, B 67, 775.
17 Zhong, J.; Malcolm, S. G. Nano. Lett. 2006, 6, 128-132 [DOI:http://dx.doi.org/10.1021/nl062183e].   DOI   ScienceOn
18 Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science. 2001, 292, 1897 [DOI: http://dx.doi.org/10.1126/science.1060367].   DOI   ScienceOn
19 Yan, H.; Johnson, J.; Law, M.; He, R.; Knutsen, K.; McKinney, J. R.; Pham, J.; Saykally, R.; Yang, P. Adv. Mater. 2003, 15, 1907 [DOI:http://dx.doi.org/10.1002/adma.200305490].   DOI   ScienceOn
20 Konenkamp, R.; Word, R.C.; Schlegel, C. Appl. Phys. Lett. 2004, 85, 6004 [DOI: http://dx.doi.org/10.1063/1.1836873].   DOI   ScienceOn
21 Wang, H. T.; Kang, B. S.; Ren, F.; Tien, L. C.; Sadik, P. W.; Norton, D. P.; Pearton, S. J.; Lin, J. Appl. Phys. Lett. 2005, 86, 243503 [DOI:http://dx.doi.org/10.1063/1.1949707].   DOI   ScienceOn