Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.6.1687

Synthesis and Characterization of Carbon nanofibers on Co and Cu Catalysts by Chemical Vapor Deposition  

Park, Eun-Sil (Department of Chemistry, Keimyung University)
Kim, Jong-Won (Department of Chemistry, Keimyung University)
Lee, Chang-Seop (Department of Chemistry, Keimyung University)
Publication Information
Abstract
This study reports on the synthesis of carbon nanofibers via chemical vapor deposition using Co and Cu as catalysts. In order to investigate the suitability of their catalytic activity for the growth of nanofibers, we prepared catalysts for the synthesis of carbon nanofibers with Cobalt nitrate and Copper nitrate, and found the optimum concentration of each respective catalyst. Then we made them react with Aluminum nitrate and Ammonium Molybdate to form precipitates. The precipitates were dried at a temperature of $110^{\circ}C$ in order to be prepared into catalyst powder. The catalyst was sparsely and thinly spread on a quartz tube boat to grow carbon nanofibers via thermal chemical vapor deposition. The characteristics of the synthesized carbon nanofibers were analyzed through SEM, EDS, XRD, Raman, XPS, and TG/DTA, and the specific surface area was measured via BET. Consequently, the characteristics of the synthesized carbon nanofibers were greatly influenced by the concentration ratio of metal catalysts. In particular, uniform carbon nanofibers of 27 nm in diameter grew when the concentration ratio of Co and Cu was 6:4 at $700^{\circ}C$ of calcination temperature; carbon nanofibers synthesized under such conditions showed the best crystallizability, compared to carbon nanofibers synthesized with metal catalysts under different concentration ratios, and revealed 1.26 high amorphicity as well as $292m^2g^{-1}$ high specific surface area.
Keywords
Carbon nanofiber; Co catalyst; Cu catalyst; Chemical vapor deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Endo; M.; Kim, Y. A.; Hayashi; T.; Nishimura, K.; Matusita, T.; Miyashita, K.; Dresselhaus, M. S. Carbon. 2000, 1287, 1297.
2 Kim, M. S.; Rodrigues, N. M.; Baker, R.T. K. J. Catal. 1991, 131, 60.   DOI
3 Shu-ping, Z. New Carbon Materials 2010, 25, 9.   DOI
4 Li, D.; Xia, Y. Nano Letters 2004, 4, 933.   DOI   ScienceOn
5 Bognitzki, M.; Czado, M.; Frese, T.; Schaper, A.; Hellwig, M.; Steinhart, M.; Greiner, A.; Wendorff, J. H. Adv. Mater. 2001, 13, 70.   DOI   ScienceOn
6 Tzeng, S. S.; Yang, T. C. Composite Interfaces 2005, 12, 259.   DOI
7 Jarrah, N. A.; Li, F.; Van Ommen, J. G.; Lefferts, L. J. Mater. Chem. 2005, 15, 1946.   DOI
8 Lee, S. W.; Mees, K.; Park, H. S.; Willert-Porada, M.; Lee, C. S. Advanced Materials Research 2013, 750-752, 280-292.   DOI
9 Van Der Lee, M. K.; Van Dillen, A. J.; Geus, J. W.; De Jong, K. P.; Bitter, J. H. Carbon 2006, 44, 629.   DOI
10 Kim, T. Y.; Mees, K.; Park, H. S.; Willert-Porada, M.; Lee, C. S. J. Nanosci. Nanotechnol. 2013, 13, 7337.   DOI
11 Dresselhaus, M. S.; Dresselhaus, G.; Sugihara, K.; Spain, I. L.; Goldberg, H. A. Graphite Fibers and Filaments; Springer Press: 1988.
12 Chambers, C.; Park, R. T.; Baker, K.; Rodriguez, N. M. J. Phys. Chem. B 1998, 102, 4253.   DOI   ScienceOn
13 Fun, Y.-Y.; Liao, B.; Liu, M.; Wei, Y.-L.; Lu, M.-Q.; Cheng, H.-M. Carbon 1999, 37, 1649.   DOI
14 Rodriquez, N. M. J. Mater. Res. 1993, 8, 3233.   DOI   ScienceOn
15 Ahn, C. C.; Ye, Y.; Tatnakumar, B. V.; Witham, C.; Bowman, R. C., Jr.; Fultz, B. Appl. Phys. Lett. 1998, 73, 3378.   DOI   ScienceOn
16 Bartholomew, C. H. Catal Rev. Sci. Eng. 1982, 24, 67.   DOI   ScienceOn
17 Seo, G. Y. Understanding Nano Technology; SNU Press: 2011.
18 Trimm, D. L. Catal Rev. Sci. Eng. 1977, 16, 115.
19 Baker, R. T. K.; Harris, P. S.; Thomas, R. B.; Waite, R. J. J. Catal. 1973, 30, 86.   DOI
20 Stemmet, C. P.; Meeuwse, M.; Van der Schaaf, J. B.; Kuster, F. M.; Schouten, J. C. Chem. Eng. Sci. 2007, 62, 5444.   DOI