DOI QR코드

DOI QR Code

Substrate Temperature Dependence of Microcrystalline Silicon Thin Films by Combinatorial CVD Deposition

  • Kim, Yeonwon (Division of Marine Engineering, Korea Maritime University)
  • Received : 2015.06.22
  • Accepted : 2015.06.29
  • Published : 2015.06.30

Abstract

A high-pressure depletion method using plasma chemical vapor deposition (CVD) is often used to deposit hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films of a low defect density at a high deposition rate. To understand proper deposition conditions of ${\mu}c-Si:H$ films for a high-pressure depletion method, Si films were deposited in a combinatorial way using a multi-hollow discharge plasma CVD method. In this paper the substrate temperature dependence of ${\mu}c-Si:H$ film properties are demonstrated. The higher substrate temperature brings about the higher deposition rate, and the process window of device quality ${\mu}c-Si:H$ films becomes wider until $200^{\circ}C$. This is attributed to competitive reactions between Si etching by H atoms and Si deposition.

Keywords

References

  1. J. Meir, S. Dubail, R. Fluckiger, H. Keppner, and A. Shah : Proc. 1st WCPEC (1994) 409.
  2. Y. Sobajima, T. Higuchi, J. Chantana, T. Toyama, C. 0Sada, A. Matsuda, and H. Okamoto : Phys. Status Solidi C 7 (2010) 521.
  3. S. Nunomura, I. Yoshida, M. Kondo : Appl. Phys. Lett. 94 (2009) 071502. https://doi.org/10.1063/1.3086312
  4. Y. Sobajima M. Nishino, T. Fukumori, T. Higuchi, S. Nakano, T. Toyama, H. Okamoto : Sol. Energy Mater. Sol. Cell 93 (2009) 980. https://doi.org/10.1016/j.solmat.2008.11.042
  5. M. Kondo, M. Fukawa, L. Guo, A. Matsuda : J. Non- Cryst. Solids 84 (2000) 266.
  6. S. Klein, F. Finger, R. Carius, M. Stutzmann : J. Appl. Phys. 98 (2005) 024905. https://doi.org/10.1063/1.1957128
  7. L. Guo, M. Kondo, M. Fukawa, K. Saitoh, and A. Matsuda : Jpn. J. Appl. Phys. 37 (1998) L1116. https://doi.org/10.1143/JJAP.37.L1116
  8. M. Kondo, M. Fukawa, L. Guo, and A. Matsuda : J. Non-Cryst. Solids 266-269 (2000) 84.
  9. A. Matsuda : Jpn. J. Appl. Phys. 43 (2004) 7909. https://doi.org/10.1143/JJAP.43.7909
  10. Y. Sobajima, T. Higuchi, J. Chantana, T. Toyama, C. Sada, A. Matsuda, and H. Okamoto : Physica Status Solidi C 7 (2010) 521.
  11. G. Dingemans, M. N. van den Donker, D. Hrunski, A. Gordijin, W. M. M. Kessels, and M. C. M. van de Sanden : Appl. Phys. Lett. 93 (2008) 111914. https://doi.org/10.1063/1.2987519
  12. A. A. Howling, R. Sobbia, and Ch. Hollenstein : J. Vac. Sci. Technol. A 28 (2010) 989. https://doi.org/10.1116/1.3328824
  13. A. Matsuda: : J. Non-Cryst. Solids 59-60 (1983) 767.
  14. A. Matsuda : Thin Solid Films 337 (1999) 1. https://doi.org/10.1016/S0040-6090(98)01165-1
  15. J. K. Rath, A. D. Verkerk, Y. Liu, M. Brinza, W. J. Goedheer, and R. I. E. Schropp : Mater. Sci. Eng. B 159-160 (2009) 38.
  16. X. R. Duan, H. Lange, A. Meyer-Plath : Plasma Sources Sci. Technol.12 (2003) 554. https://doi.org/10.1088/0963-0252/12/4/307
  17. P. Kae-Nune, J. Perrin, J. Jolly, and J. Guillon : Surf. Sci. 360 (1996) L495. https://doi.org/10.1016/0039-6028(96)00732-7
  18. W. Beyer : Sol. Energy Mater. Sol. Cells 78, (2003) 235. https://doi.org/10.1016/S0927-0248(02)00438-5
  19. K. Koga, T. Inoue, K. Bando, S. Iwashita, M. Shiratani, and Y. Watanabe : Jpn. J. Appl. Phys. 44 (2005) L1430. https://doi.org/10.1143/JJAP.44.L1430
  20. W. M. Nakamura, H. Miyahara, H. Sato, H. Matsuzaki, K. Koga, and M. Shiratani : IEEE Trans. Plasma Sci. 36 (2008) 888. https://doi.org/10.1109/TPS.2008.923830
  21. W. M. Nakamura, H. Miyahara, K. Koga, and M. Shiratani : J. Phys.: Conf. Ser. 100 (2008) 082018. https://doi.org/10.1088/1742-6596/100/8/082018
  22. H. Sato, Y. Kawashima, M. Tanaka, K. Koga, W. M. Nakamura, and M. Shiratani : J. Plasma Fusion Res. SERIES 8 (2009) 1435.
  23. K. Koga, T. Inoue, K. Bando, S. Iwashita, M. Shiratani, and Y. Watanabe : Jpn. J. Appl. Phys. 44, (2005) L1430. https://doi.org/10.1143/JJAP.44.L1430
  24. M. H. Brodsky, R.S. Title : Phys. Rev. Lett. 23 (1969) 581. https://doi.org/10.1103/PhysRevLett.23.581
  25. S. T. Pantelides : Phys. Rev. Lett. 57, (1986) 2979. https://doi.org/10.1103/PhysRevLett.57.2979
  26. J. Abrefah, D.R. Olander : Surf. Science. 209, (1989) 291. https://doi.org/10.1016/0039-6028(89)90077-0
  27. L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger and H. Wagner : Philos. Mag. A 77 (1998) 1447. https://doi.org/10.1080/01418619808214262
  28. Itanashi, N. Nishikawa, M. Magane, S. Naito, T. Goto, A. Matsuda, C. Yamada, and E. Hirota : Jpn. J. Appl. Phys. 29 (1990) L505. https://doi.org/10.1143/JJAP.29.L505
  29. J. Perrin, M. Shiratani, P. Kae-Nune, H. Videlot, and J. Guillon : J. Vac. Sci. Technol. A, Vac. Surf. Films 16 (1998) 278. https://doi.org/10.1116/1.580983
  30. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner : Sol. Energy Mater. Sol. Cells 62 (2003) 97.
  31. P. C. P. Bronsveld, J. K. Rath, and R. E. I. Schropp, et al., : Appl. Phys. Lett. 89 (2006) 051922. https://doi.org/10.1063/1.2244101
  32. S. Veprek, F.-A. Sarott and M. Ruckschloss, J. Non-Cryst. Solids 137&138 (1991) 733.