DOI QR코드

DOI QR Code

Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition

  • Lee, Sang Yeol (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2013.03.05
  • Accepted : 2013.04.11
  • Published : 2013.06.25

Abstract

The control of Ga doping in ZnO nanowires (NWs) by physical vapor deposition has been implemented and characterized. Various Ga-doped ZnO NWs were grown using the vapor-liquid-solid (VLS) method, with Au catalyst on c-plane sapphire substrate by hot-walled pulsed laser deposition (HW-PLD), one of the physical vapor deposition methods. The structural, optical and electrical properties of Ga-doped ZnO NWs have been systematically analyzed, by changing Ga concentration in ZnO NWs. We observed stacking faults and different crystalline directions caused by increasing Ga concentration in ZnO NWs, using SEM and HR-TEM. A $D^0X$ peak in the PL spectra of Ga doped ZnO NWs that is sharper than that of pure ZnO NWs has been clearly observed, which indicated the substitution of Ga for Zn. The electrical properties of controlled Ga-doped ZnO NWs have been measured, and show that the conductance of ZnO NWs increased up to 3 wt% Ga doping. However, the conductance of 5 wt% Ga doped ZnO NWs decreased, because the mean free path was decreased, according to the increase of carrier concentration. This control of the structural, optical and electrical properties of ZnO NWs by doping, could provide the possibility of the fabrication of various nanowire based electronic devices, such as nano-FETs, nano-inverters, nano-logic circuits and customized nano-sensors.

Keywords

References

  1. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science. 2001, 292, 1897 [DOI: http://dx.doi.org/10.1126/science.1060367].
  2. Yan, H.; Johnson, J.; Law, M.; He, R.; Knutsen, K.; McKinney, J. R.; Pham, J.; Saykally, R.; Yang, P. Adv. Mater. 2003, 15, 1907 [DOI:http://dx.doi.org/10.1002/adma.200305490].
  3. Konenkamp, R.; Word, R.C.; Schlegel, C. Appl. Phys. Lett. 2004, 85, 6004 [DOI: http://dx.doi.org/10.1063/1.1836873].
  4. Wang, H. T.; Kang, B. S.; Ren, F.; Tien, L. C.; Sadik, P. W.; Norton, D. P.; Pearton, S. J.; Lin, J. Appl. Phys. Lett. 2005, 86, 243503 [DOI:http://dx.doi.org/10.1063/1.1949707].
  5. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nature Mater. 2005, 4, 455 [DOI: http://dx.doi.org/10.1038/nmat1387].
  6. Xiong, G.; Wilkinson, J.; Mischuck, B.; Tuzemen, S.; Ucer, K. B.; Williams, R. T. Appl. Phys. Lett. 2002, 70.1195.
  7. Ma, Y.; Du, G. T.; Yang, S. R.; Li, Z. T.; Zhao, B. J.; Yang, X. T.; Yang, T. P.; Zhang, Y. T.; Liu, D. L. J. Appl. Phys. 2004, 95, 6268. https://doi.org/10.1063/1.1713040
  8. Jiang, X.; Wong, F. L.; Fung, M. K.; Lee, S. T. Appl. Phys. Lett. 2003, 83, 1875 [DOI: http://dx.doi.org/10.1063/1.1605805].
  9. Yu, Z. G.; Wu, P.; Gong, H. Appl. Phys. Lett. 2006, 88, 132114 [DOI: http://dx.doi.org/10.1063/1.2174089].
  10. Kang, H. S.; Ahn, B. D.; Kim, J. H.; Kim, G. H.; Lim, S. H.; Chang, H. W.; Lee, S. Y. Appl. Phys. Lett. 2006, 88, 202108 [DOI: http://dx.doi.org/10.1063/1.2197317].
  11. Kim, K.; Debnath, P. C.; Park, D.-H.; Kim, S. S.; Lee, S. Y. Appl. Phys. Lett. 2010, 96, 083103 [DOI: http://dx.doi.org/10.1063/1.3290247].
  12. Zou, C. W.; Gao, W. Trans. Electr. Electron. Mater. 2010, 11, 1 [DOI: http://dx.doi.org/10.4313/TEEM.2010.11.1.001].
  13. Yuan, G. D.; Zhang, W. J.; Jie, J. S.; Fan, X.; Tang, J. X.; Shafiq, I.; Ye, Z. Z.; Lee, C. S.; Lee, S. T. Adv. Mater. 2008, 20, 168 [DOI:http://dx.doi.org/10.1002/adma.200701377].
  14. Sakurai, M.; Wang, Y. G.; Uemura, T.; Aono, M. Nanotechnology. 2009, 20, 155203 [DOI: http://dx.doi.org/10.1088/0957-4484/20/15/155203].
  15. Terasako, T.; Shirakata, S. Jpn. J. Appl. Phys. 2005, 44, L1410-L1413 [DOI: http://dx.doi.org/10.1143/JJAP.44.L1410].
  16. Lee, S. Y.; Song, Y. W.; Jeon, K. A. J. Cryst. Growth. 2008, 310, 4477 [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2008.07.041].
  17. Song, Y. W.; Lee, S. Y. Thin Solid Films. 2008, 518, 1323.
  18. Goris, L.; Noriega, R.; Donovan, M.; Jokisaari, J.; Kusinski, G.; Salleo, A. J. Electron. Mater. 2009, 38, 586 [DOI: http://dx.doi.org/10.1007/s11664-008-0618-x].
  19. Burstein, E. Phys. Rev. 1954, 93, 632 [DOI: http://dx.doi.org/10.1103/PhysRev.93.632].
  20. Moss, T. S. Proc. Phys. Soc. Lond. 1954, B 67, 775.
  21. Zhong, J.; Malcolm, S. G. Nano. Lett. 2006, 6, 128-132 [DOI:http://dx.doi.org/10.1021/nl062183e].

Cited by

  1. A comprehensive optimization of aluminum concentration in ZnO nanocrystals by novel simple methods vol.11, pp.6, 2015, https://doi.org/10.1007/s13391-015-5075-0