Browse > Article
http://dx.doi.org/10.3740/MRSK.2005.15.4.246

Microstructure Analysis of Carbon Nanotubes Grown by Plasma Enhanced Chemical Vapor Deposition  

Yoon Jongsung (Department of Materials Engineering, Graduate School, Kyungnam University)
Yun Jondo (Division of Advanced Materials, Kyungnam University)
Park Jongbong (AE Center, Samsung Advanced Institute of Technology (SAIT))
Park Kyeongsu (AE Center, Samsung Advanced Institute of Technology (SAIT))
Publication Information
Korean Journal of Materials Research / v.15, no.4, 2005 , pp. 246-251 More about this Journal
Abstract
Plasma enhanced chemical vapor deposition(PE-CVD) method has an advantage in synthesizing carbon nanotubes(CNTs) at lower temperature compared with thermal enhanced chemical vapor deposition(TE-CVD) method. In this study, CNTs was prepared by using PE-CVD method. The growth rate of CNT was faster more than 100 times on using Invar alloy than iron as catalyst. It was found that chrome silicide was formed at the interface between chrome layer and silicon substrate which should be considered in designing process. Nanoparticles of Invar catalyst were found oxidized on their surfaces with a depth of 10 m. Microstructure was analyzed by scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray spectrometry. Based on the result of analysis, growth mechanism at an initial stage was suggested.
Keywords
carbon nanotubes; plasma enhanced chemical vapor deposition (PE-CVD); microstructure; mechanism;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 N. S. Saks, P. L. Heremans, L. Van den Hove, H. E. Maes, R. F. DeKeersmaecker and G. J. Declerck, IEEE Trans. Electron Device, ED-33(10), 1529-1534 (1986)   DOI   ScienceOn
2 C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng and M. S. Desselhaus, Science, 286, 1127 (1999)   DOI   ScienceOn
3 S. J. Tans, R. Alwin, M. Verschueren and C. Dekker, Nature, 393, 49 (1998)   DOI
4 P. L. McEuen, Nature, 393, 15 (1998)   DOI
5 P. G. Collins, M. S. Arnold and P. Avouris, Science, 292, 706 (2001)   DOI   ScienceOn
6 J. H. Hafner, C. L. Cheung and C. M. Lieber, Nature, 398, 761 (1999)   DOI   ScienceOn
7 P. Poncharal, Z. L. Wang, D. Ugarte and W. A. de Heer, Science, 283, 1513 (1999)   DOI   ScienceOn
8 W. B. Downs and R. T. K Baker, J. Mater. Res., 10(3), 625-633 (1995)   DOI
9 A. L. Cara and D. L. Trimm, Carbon, 16(6), 505-506 (1978)   DOI   ScienceOn
10 H. Yumoto, R. R. Hasiguti and T. Watanabe, J. Crystal growth, 87(1), 1 (1988)   DOI   ScienceOn
11 D. H. Rho, J. S. Kim, D. J. Byun, J. W. Yang and N. R. Kim, Kor. J. Mater. Res., 13(10), 677 (2003)   DOI   ScienceOn
12 Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou and G. Wang, Chem. Phys. Lett., 299(1), 97 (1999)   DOI   ScienceOn
13 C. J. Lee and J. Park, Appl. Phys. Lett., 77(21), 3397 (2000)   DOI   ScienceOn
14 R. T. K. Baker, Carbon, 27, 315 (1989)   DOI   ScienceOn
15 C. J. Lee and J. Park, J. Phys. Chem. B, 105(12), 2367 (2001)   DOI   ScienceOn