• Title/Summary/Keyword: values of functions

Search Result 1,671, Processing Time 0.03 seconds

Development of Intelligent Robot Control Technology By Electroocculogram Analysis (안전도 신호 분석을 통한 지능형 로봇 제어 기법의 개발)

  • Kim Chang-Hyun;Lee Ju-Jang;Kim Min-Soeng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.755-762
    • /
    • 2004
  • In this research, EOG(Electrooculogram) signal was analyzed to predict the subject's intention using a fuzzy classifier. The fuzzy classifier is built automatically using the EOG data and evolutionary algorithms. An assistant robot manipulator in redundant configuration has been developed, which operates according to the EOG signal classification results. For automatic fuzzy model construction without any experts' knowledge, an evolutionary algorithm with the new representation scheme, design of adequate fitness function and evolutionary operators, is proposed. The proposed evolutionary algorithm can optimize the number of fuzzy rules, the number of fuzzy membership functions, parameter values for the each membership functions, and parameter values for the consequent parts. It is shown that the fuzzy classifier built by the proposed algorithm can classify the EOG data efficiently. Intelligent motion planner that consists of several neural networks are used for control of robot manipulator based upon EOG classification results.

The Estimation of The Block Pulse Series by The Lagrange's Second Order Interpolation Polynomial (Lagrange 이차 보간 다항식을 이용한 블록 펄스 급수 추정)

  • Kim, Tai-Hoon;Lee, Hae-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.235-240
    • /
    • 2002
  • This paper presents a new method for estimating the block pulse series coefficients by using the Lagrange's second order interpolation polynomial. Block pulse functions have been used in a variety of fields such as the analysis and controller design of the systems. When the block pulse functions are used, it is necessary to find the more exact value of the block pulse series coefficients. But these coefficients have been estimated by the mean of the adjacent discrete values, and the result is not sufficient when the values are changing extremely. In this paper, the method for improving the accuracy of the block pulse series coefficients by using the Lagrange's second order interpolation polynomial is presented.

DERIVATIVES FOR THE LINEARITY OF TERNARY NUMBER VALUED FUNCTIONS

  • Kang, Han Ul;Lee, Kwangho;Shon, Kwang Ho
    • Honam Mathematical Journal
    • /
    • v.38 no.4
    • /
    • pp.685-692
    • /
    • 2016
  • The aim of this paper is to investigate the differentials of the hypercomplex valued functions in Clifford analysis. Like as the differentials defined by the naïve approach in one complex variable analysis, we define the differentials of functions with values in ternary number functions by same ways. And we survey the properties of each differential with respect to a non-commutativity of the skew field.

Measurement Error Variance Estimation Based on Complex Survey Data with Subsample Re-Measurements

  • Heo, Sunyeong;Eltinge, John L.
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.553-566
    • /
    • 2003
  • In many cases, the measurement error variances may be functions of the unknown true values or related covariates. This paper considers design-based estimators of the parameters of these variance functions based on the within-unit sample variances. This paper devotes to: (1) define an error scale factor $\delta$; (2) develop estimators of the parameters of the linear measurement error variance function of the true values under large-sample and small-error conditions; (3) use propensity methods to adjust survey weights to account for possible selection effects at the replicate level. The proposed methods are applied to medical examination data from the U.S. Third National Health and Nutrition Examination Survey (NHANES III).

Meromorphic Function Sharing Two Small Functions with Its Derivative

  • Liu, Kai;Qi, Xiao-Guang
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.2
    • /
    • pp.235-243
    • /
    • 2009
  • In this paper, we deal with the problem of uniqueness of meromorphic functions that share two small functions with their derivatives, and obtain the following result which improves a result of Yao and Li: Let f(z) be a nonconstant meromorphic function, k > 5 be an integer. If f(z) and g(z) = $a_1(z)f(z)+a_2(z)f^{(k)}(z)$ share the value 0 CM, and share b(z) IM, $\overline{N}_E(r,f=0=F^{(k)})=S(r)$, f${\equiv}$g, where $a_1(z)$, $a_2(z)$ and b(z) are small functions of f(z).

THE UNIQUENESS OF MEROMORPHIC FUNCTIONS WHOSE DIFFERENTIAL POLYNOMIALS SHARE SOME VALUES

  • MENG, CHAO;LI, XU
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.475-484
    • /
    • 2015
  • In this article, we deal with the uniqueness problems of meromorphic functions concerning differential polynomials and prove the following theorem. Let f and g be two nonconstant meromorphic functions, n ≥ 12 a positive integer. If fn(f3 - 1)f′ and gn(g3 - 1)g′ share (1, 2), f and g share ∞ IM, then f ≡ g. The results in this paper improve and generalize the results given by Meng (C. Meng, Uniqueness theorems for differential polynomials concerning fixed-point, Kyungpook Math. J. 48(2008), 25-35), I. Lahiri and R. Pal (I. Lahiri and R. Pal, Nonlinear differential polynomials sharing 1-points, Bull. Korean Math. Soc. 43(2006), 161-168), Meng (C. Meng, On unicity of meromorphic functions when two differential polynomials share one value, Hiroshima Math.J. 39(2009), 163-179).

Calculation of Wave Amplitude Functions, Wave Resistance, Wave Elevation Along the Hull, Sinkage and Trim by First-Order Thin-Ship Theory (얇은배 선형이론에 의한 진폭영수 조피저항 선측파고, 침하와 Trim의 계산)

  • Gang, Sin-Hyeong;Lee, Yeong-Gil;Hyeon, Beom-Su
    • 한국기계연구소 소보
    • /
    • s.9
    • /
    • pp.153-167
    • /
    • 1982
  • From first-order thin-ship theory, we can obtain the" wave resistance, wave amplitude functions, wave elevation along the hull, sinkage and trim of a ship moving with constant speed into calm water. Generally, these calculations of ship is called with Michell’s Theory, and there is all the difference between calculated wave resistance and residual resistance from conventional wave resis¬tance test. But, these calculated results are important reference materials for initial hull form design procedure. Various calculated results for Shearer’ s Model, Wigley’s Model and Series 60 4210W Model have been calculated using this theory. The results are compared with the corresponding experimental values, and the agreement between theoretical and experimental values is considered satisfactory.

  • PDF

Estimation based on lower record values from exponentiated Pareto distribution

  • Yoon, Sanggyeong;Cho, Youngseuk;Lee, Kyeongjun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1205-1215
    • /
    • 2017
  • In this paper, we aim to estimate two scale-parameters of exponentiated Pareto distribution (EPD) based on lower record values. Record values arise naturally in many real life applications involving data relating to weather, sport, economics and life testing studies. We calculate the Bayesian estimators for the two parameters of EPD based on lower record values. The Bayes estimators of two parameters for the EPD with lower record values under the squared error loss (SEL), linex loss (LL) and entropy loss (EL) functions are provided. Lindley's approximate method is used to compute these estimators. We compare the Bayesian estimators in the sense of the bias and root mean squared estimates (RMSE).

Design and Analysis of Code Sequence Generating Algorithms using Almost Perfect Nonlinear Functions (APN 함수를 이용한 부호계열 발생 알고리즘 설계 빛 분석)

  • Lee, Jeong-Jae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • For cryptographic systems, nonlinearity is crucial since most linear systems are easily decipherable. C.Bracken, Z.Zhaetc., propose the APN(Almost Perfect Nonlinear) functions with the properties similar to those of the bent functions with perfect nonlinearity. We design two kinds of new code sequence generating algorithms using the above APN functions. And we find that the out of phase ${\tau}\;{\neq}\;0$, autocorrelation functions, $R_{ii}(\tau)$ and the crosscorrelation functions, $R_{ik}(\tau)$ of the binary code sequences generated by two new algorithms over GF(2), have three values of {-1, $-1-2^{n/2}$, $-1+2^{n/2}$}. We also find that the out of phase ${\tau}\;{\neq}\;0$, autocorrelation functions, $R_{p,ii}(\tau)$ and the crosscorrelation functions, $R_{p,ik}(\tau)$ of the nonbinary code sequences generated by the modified algorithms over GF(p), $p\;{\geq}\;3$, have also three values of {$-1+p^{n-1}$, $-1-p^{(n-1)/2}+p^{n-1}$, $-1+p^{(n-1)/2}p^{n-1}$}. We show that these code sequences have the characteristics of the correlation functions similar to those of Gold code sequences.