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Measurement Error Variance Estimation
Based on Complex Survey Data with
Subsample Re-Measurements
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Abstract

In many cases, the measurement error variances may be functions of the unknown
true values or related covariates. This paper considers design-based estimators of the
parameters of these variance functions based on the within—unit sample variances.
This paper devotes to: (1) define an error scale factor & (2) develop estimators of
the parameters of the linear measurement error variance function of the true values
under large-sample and small-error conditions; (3) use propensity methods to adjust
survey weights to account for possible selection effects at the replicate level. The
proposed methods are applied to medical examination data from the U.S. Third
National Health and Nutrition Examination Survey (NHANES IID.

Keywords @ Stratified multistage sampling design; Small-error approximation; Linear
regression model with unequal variances; Logistic regression; U.S. Third
National Health and Nutrition Examination Survey.

1. Introduction

A measurement error is generally defined to be the difference between an observed value
and an underlying true value. Some authors, e.g., Grove (1991), refer to measurement errors
as observed errors. If measurement errors are nontrivial, then estimators from classical
methods may have corresponding nontrivial biases. For example, Fuller (1987, sec.1.l.) noted
that if the predictor variables in a simple linear regression model are measured with error, the
ordinary least squares estimators generally are biased. Also, the correlation between the
dependent variable and the independent variables is generally reduced by the presence of

measurement error.
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Since the 1940s, people have been concerned about various problems associated with
measurement errors. See, e.g., Dalenius (1981) for a review of some early literature, and
Biemer et al. (1991) for a more recent review.

Carroll and Stefanski (1990) defined a general form of a measurement error model. They
considered three general approximate models for a response Y given Z when Z is a ¢
-variate proxy for a p-variate predictor X (g=p) and some of Z are measured with errcr.
One of their important results is that when the measurement error is small, under additional
conditions one can directly use Z in the place of X without accounting explicitly for the
errors. They assurned that observations are stochastically independent. However, in a complex
survey design using cluster sampling, observations are not independent within a cluster.

This paper will consider measurement error variance estimation for a known function under
a finite population conditions and a specified complex sampling design. By using extensions of
the Carroll and Stefanski results, we will derive estimators of the parameters when
measurements errors are small.

In Section 2, we define a measurement error model and a measurement error variance

function. In Section 3, we define a sampling design and an error scale factor ¢, and develop
estimators of the parameters defined in Section 2 under small error conditions. In Section 4,
we apply the methods of this paper to data from the U.S. Third National Health and Nutrition
Examination Survey (NHANES II).

2. Measurement Error Model and Measurement Error Variance Function

2.1 Measurement Error Model

Assume that we know only Z as a proxy for X and also assume that Z is unbiased for
X. In addition, two replicate measurements are taken at each design point. Then following

the notation of Carroll and Stefanski (1990), for a given x, the model will be written as
Zy=2x+0U, (2.1)
for t=1,2,...,n r= 1,2 where & is a positive scale factor and the random variable U,

has
E(Utrlxt) = () and Var(Utrlxt) = -Q(xt,V)-

The 2(x,,7) is a known function of parameter 7 and x, In the following work we will
denote Q(x,,7) as £, if it is not necessary to emphasize £, being a function of (x,, 7).
The random variable U, in model (2.1) can be written as Uyp= .Q,”zd » Where

d,= .Q,‘”ZU . The random variable d, is independent of x. In other words, U, depends
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on x only through the scale factor .Q,l/z. From this fact, we may write model (2.1) as
Z,=x+ (62/"d, (2.2)
where the d, are independent and identically distributed with mean 0 and variance 1 for all

t and 7
2.2 Measurement Error Variance Function

In many cases, the measurement error variances increase proportionally as the values of
predictors increase or decrease. For a first order approximation, it sometimes suffices to model
the measurement error variance £2(x,, ) as a linear function of x, and this paper will focus
on this approach.

The linear measurement error variance function of x will be written as

Q=7+ nx (2.3)
for a given x,.

Davidian and Carroll (1987) discussed several methods of variance function estimation based
on some transformations of absolute residuals from the current fit to the mean or sample
standard deviations from replicates. Davidian (1990) compared efficiencies of different
transformations based on sample standard deviations from replicates for contaminated normal
distributions. Through simulation results, she showed that the square transformations may be
more efficient than the log and the identity under normal distribution conditions.

In (2.1) we assumed that we do not know the values of x, and hence we can not calculate

residuals from fitting of model (2.3). Therefore, we will consider the measurement error
variance estimation based on the sample variances.
Under model (2.1), for a given value x; and a known &, an unbiased estimator of £; is

87%S% where SP=(Zny~Zp)2= 854 and Su=(Uu—Uy?/2 is the sample

variance within the fth unit. Note that Sy = 8_25% In addition, an unbiased estimator of x;

is -2,. ="2L(Zt1+Zt2).

3. Design Based Estimation of Measurement Error Variance

In this section, we will consider the estimation of y= (7, 71)" in equation (2.3) based on
data obtained from a complex sample selected from a finite population. When we have the
true observations of entire population, y will be a function of the population totals of the

observations. The parameter 7 can be estimated by a sample which is drawn by a specified
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sampling method.
3.1 Sampling Design

We assume the following design condition which is quoted with minor modifications from
the stratified multistage sampling design in Shao (1996, p.205-206).

(D.1) The population has been stratified into L strata with N, clusters in the #hth strattm.
For the #hth stratum, #n,(=2) clusters are selected independently across the strata. These

first-stage clusters are selected with unequal selection probabilities and with replacement.
Within the ¢th first-stage cluster in the #Ahth stratum, #», =1 ultimate units are sampled

according to some sampling methods, =1, -, n; h=1,---, L. The total number of ultimate

N, n
units in the population is N= ;1 le i and in the sample is zn= 5_1.1 2172 #i- The total
= & = &

number of first-stage clusters in the sample is #p = gnh.

3.2 A Linear Measurement Error Variance Model

Under model (2.3) we may write a regression model such as
ps = v0 + 1%ns T Eni (3.1)
where ¢€,; are independent and identically distributed with mean 0 and a finite variance 025
for all ( hif). The &5; account for the deviation of the £,; from the line 7y, + 7,x,; Under
model (2.1) when we have # observed values, (Y s, X sn) = (87282, VA mi- ), for a given
¢ instead of (8, %4;), we can write a model,
Yhi = Yo+ V1 %nii T Eni
CY oo X oni) = nig» Xni) + (g i) (32)

where Vi = Qpi  Thg = Sumg — 2py and ;= 8 Ups.. The Upy. = ‘%‘( U pijn + U i)

The variable {,; is an independent (0, 0yyy) random variable with 0 gy = Var( Shmii)
and the variable u; is an independent (0, 6,47 random variable with 0 up; = 8224l 2.
Note that under model (2.2) S%p;= .Qh,'jszdhij where Szzz'hij: 2 Ndwn — dhz'ﬂ)z and Szdhz‘i is
independent and identically distributed with mean 1 and a constant variance, say c. Thereforz

Var (S%;) = c.Q%,,-j . If we assume that the Uy, follow a normal distribution, then c¢= 2.

We will assume here that the errors, &; in the regression equation (3.2) are independent of
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(%hij» Chijs Uny) for all (hip).
For the following theory, we need to take expectations in two ways; one is based on the
sampling design (D.1), the other is based on the model (3.2), especially for the error terms.

We will use the notations E p. to denote expectation evaluated with respect to on both design
and model, Ep based on only the sampling design, and E; based on only the model.

For convenience, we will replace the triple subscript (%)) with the single subscript # from
the following expressions if it is not necessary to specify strata, clusters and ultimate units.

3.3 Estimation of moments of the finite population

Under the survey design (D.1) and model (3.2), when we have N true values, (y,x,),

define
Sa=NTUH( £)(Lx) and Z,=N"' 21 %),
and when we have N observations of (Y4, X 5) instead of (v, x,), define

Txx =N 5 X' (1 Xa) and S, = N7 21 X0)' Ve

and also define
Euu = dlag (01 Guu) and Z&uu = dlag (O, d&uu)

with 0= N} ‘gduu, and 0= N! g‘i Gy Where Gpu= 6°2,/2 and T, = S¢/2.

When we have # sampled true values, (y;,x,), from a finite population, %', and 2, can

be estimated by
M, =N"! let(l x)'(1 %) and M,,=N"" glwt(l X)) v

where w, is a unit-level survey weight. In addition, when we have observations of

(Y&, X s) in the place of (y,,xy), we may have
Myx,~=N"! let(l X' (1 X5 and Mx,y,=N"" Z‘wt(l Xo)' Yo
instead of M, and M, In addition, %, can be estimated by Ss. = diag (0, 0su)

~ _1 A
where Ogp = N f_‘. W; Ot -

3.4 Definition and Estimation of &

To define the error scale factor & in (2.1), the concept of a sequence of finite populations is
required. By quoting Shao’s notations, we will consider a sequence of finite populations
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indexed by £=1,2,... with population size N, for each % Then the population quantities
L,N,N,, N, the sample sizes n, ny, 1y, the sample values y,; and the survey weight w,;

depend on the index £ (Shao, 1996, p.210).

Definition 3.1. Use model (3.2), define
8% = ¢ 'tr[ 22 diag (0, D)2 ]

where Q=plim{Nk"lt§/‘Var(?,.—x,)}, 2m=plz'm{Nk'l;}k(l,x,)'(l,x,)}, U, is the

kth full finite population, and ¢ is the rank of the matrix [ X =M diag(0, 2)3 ;Y 2].

In the Definition 3.1, the notation pim(X,) = X denotes that the sequence of a random
variable X, converges in probability to a limit X. The #7{A) denotes the trace of matrix
A.

To motivate and illustrate Definition 3.1 of 62, note that M x,x, can be expressed such as
Myx,=Mu+Ssu+R (3.3)
where R denotes the remainder.

Under model (2.2), design (D.1), and additional regularity conditions, K is at most order in
probability 77 /28 and T oun— O v = O,(n,?l/ZSZ) where 0 = Mlzw,duu, . For mcre
details of the order of R, see the Appendix. When we assume that M,, is nonsingular,

MI'Mxx,=1+M2'S s+ M:'R.
Under design (D.1), model (2.2), and additional regularity conditions,
Mz'R=0(1) - Ofnr"20) = 0,(nz""5)
and ’
M!S = M5! Suus+ M NS = Sud = O(8%) + O(1) - Oy nr"6%)
where S, = diag(0, 04 ).

Consequenﬂy, the performance of M x, will depend primarily on M'S ;. than Mo R
provided we have both & small and =y large. Thus, the size of M xx, relative to M,
depends on the size of M!S su

Note that the trace of (M2 S s Mo 12) s equal to the trace of M 'S 5. Also, note
that under model (3.2), Ed 0smlx) = 0w and Eo( Mylx)=M,  where

M.=Mxx,— S sur Thus, & can be estimated by
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B _ - 1/2
3={a7't{ My "*Ssm M) (3.4)
3.5 Measurement Error Variance Estimation under Small Error Approximation

When the measurement error is small, by the result of Carroll and Stefanski (1990, p. 654),
we can rewrite the model (3.2) such as

Y= 1+ nXat ¢ (35)
where ¢, = (&, + §,) — riu; with
E5(¢t'xt) = () and Ve(¢t|xt) = 0%+ CQ% + 7%(329;/2)

The variance of ¢, for given value x, Varg(¢lx,), goes to o+ cQ% as 6—0. The model
(3.5) has the form of a simple linear regression model with unequal variances. Therefore,

under the sampling design (D.1) we have an ordinary least squares estimator of 7,
Y = M).(,lx,,sty, (3.6)
where 7= ( %, 7)’. Under the design (D.1), model (3.5) and additional regularity

conditions, M xx,— % xx,= 0,(n5'?) and Myx,y,— 2 x,y, = Oy(nr"?). These results and

additional routine arguments show that y— 7= Op(n;UZ)_

4. Application to the U.S. NHANES III Data
4.1 The U.S. NHANES III Data

The U.S. Third National Health and Nutrition Examination Survey (NHANES III) was
conducted for the U.S. National Center for Health Statistics (NCHS) to assess the health and
nutritional status of the non-institutionalized civilian population in the United States. NHANES
III is a large-scale sample survey based on a stratified multistage design with 49 strata.
Within each stratum, two primary sample units (PSUs, roughly equivalent to counties) are
selected with unequal probabilities. Additional levels of sampling select secondary units
(roughly equivalent to city blocks), households and individual persons. Each selected person is
asked to complete a questionnaire and to participate in a very thorough medical examination.

As part of NHANES III, the NCHS considered using a formal two-phase sampling design
to obtain replicate measurements from a relatively small subset of the group of original
respondents. However, this ultimately was not feasible due to scheduling constraints for the
medical examination equipment and other factors. As an alternative, participants in a first
interview and examination were asked at the end of the examination whether they would be
willing to participate in a second interview and examination. Those who agreed were listed
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and were selected for re-examination as scheduling permitted. An additional complication that
arose with bone mineral density (BMD) measurements was that some sampled persons did
not provide measurements even though they participated in the remainder of the interview and
examination. For example, any woman who indicated she might be pregnant was excluded
from the BMD measurements.

In this research, we restricted the analysis to adults aged 20 and up; very few replicate
measurements were collected from children. The measurement we are interested in is total
region bone mineral density (TOBMD) measurement. Two TOBMD measurements were

obtained only 1,108 persons among 16,573 adults.
4.2 Survey Weight Adjustment

Since replicate measurements were obtained from only a small subset of the original
respondents, the survey weights, say wp;; need to be adjusted to account for possible
selection effects at the replication level. If we know the probability, say p;; that a unit in
the original respondents’ group given sample gives replicate measurements, then the adjus:ed
weight can be expressed by

Wonis = Wini! Phij (3.7

and the population size, N, is equal to hz won; where s, represents the set of all urits
1ES,

(hij) responding at both stages. Thus, by using this adjusted weights, wy; to M xx,
Mx,y, Ssu, We obtain the same results as section 3 for the measurement error variance
estimator.

The process of which a unit responds at the second stage can be modeled as a Bernoulli{ p)
random variable. The probability p can be considered a function, say p= p(x), of some
auxiliary variables x that are observed for both respondents and nonrespondents.

Define the response indicator 7j; =1 if a unit (A7) gives replicate measurement; 0 other.
The probability, p; can be estimated by a logistic regression model such as

log [p(x)/{1—p(x)}]=x"8B (3.8)

(Eltinge, Heo, and Lee, 1997).

To find a model that explains well the probability that one gives two TOBMD
measurements, we use the logistic regression model in (3.8). We anticipate that a
respondents’s race/ethnic origin, gender, age and resident place will affect the probability;
specific explanatory indicator variables are reported in Table 4.1. Exploratory analysis led to
final model coefficient estimates reported in Table 4.2. Using the final model we estimate the

probability, call it 5;,,';. Replacing pp; with 13,,,-,- in (3.7) we adjust the original weights.

Table 4.3 shows the summary of survey weights. The total survey examination weights of
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the original NHANES III is 1.772 %x10%. The total weights attached to persons giving two

TOBMD measurements are only 12,976,478 which is only 7.32% of entire population size.

After adjusting for missing values on replicate TOBMD measurements, the total weights for

Table 4.1 Explanatory indicator variables for the logistic regression model.

Variable Name

Group Indicated

(Baseline Region)
Other Region

(Northeast)
Midwest, South, and West

{Baseline Race/Ethnic)

(Non-Hispanic White)

Black Non-Hispanic Black
MAmer Mexican-American
Other Other
ORegion*QOther Midwest, South and West X Other
(Baseline Gender) (Male)

Female Female

(Baseline Age) (70+)

Age20 20-29

Age30 30-39

Aged0 40-49

Aged0 50-59

Age60 60-69

Age iF

Age i X Female, 7 = 20,30,40,50,60
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Table 4.2 Logistic regression coefficient point estimates, standard errors, approximate 95%
confidence intervals for the second-phase TOBMD sample selection propensity model.

Predictor B; se( B ( B, Biw)
Intercept -2.433 0.145 (-2.724, -2.141)
Other Region -0.110 0.121 (-0.354, 0.133)
Black -0.183 0.089 (-0.362, -0.003)
MAmer -0.291 0.103 (-0.499, -0.083)
Other 0.269 0.267 (-0.267, 0.805)
ORegion*Other -1.251 0.451 (-2.158, -0.344)
Female -0.412 0.168 (-0.749, -0.075)
Age20 -0.019 0.208 (-0.437, 0.398)
Age30 -0.258 0.210 (-0.680, 0.164)
Aged0 -0.015 0.240 (-0.498, 0.468)
Ageb0 0.279 0.246 (-0.215, 0.773)
Age60 0.611 0.144 ( 0.322, 0.900)
Age20F 0.183 0.249 (-0.318, 0.684)
Age30F -0.612 0.219 ( 0172, 1.052)
Aged0OF 0.669 0.223 (0221, 1.118)
Ageb0F 0.447 0.268 (-0.092, 0.986)
Age60F 0.105 0.259 (-0.415, 0.626)

Table 4.3 The summary of survey weights for the original NHANES III design.

Weight Total
Wi entire sample 1.772 x 10°
replicate only 12,976,478
Wanss replicate only 1.771 x 108

Table 4.4 Weighted regression coefficients estimates and standard errors and approxXimate

95% confidence intervals for the measurement error variance regression model.

Predictor 7:x10*  se( 7/'\,-)><104 ( yu, 7u)x10
Intercept -0.99 4.017 ( -9.069, 7.078)
Z,. 13.644 4717 (4165, 23.123)
Age20 ~7558 2.390 (-12.362, -2.754)
Age30 -4.151 1.716 ( -7.598, ~0.703)
Aged0 -4.082 2.237 ( -8578, 0.413)

Ageb0 -4.807 2.077 (_-8.981, -0.634)
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persons to give two TOBMD measurements is 1.771x10%. Therefore, the estimated population
size, i.e., total weights, is almost equal to the true population size. Therefore, for the following

calculations we will use wap;;.
4.3 Estimate of Error Scale Factor

From expression (3.4), ¢ of total BMD measurements is 0.0653. By experience of empirical

analysis, we may consider 0= 0.0653 as small. Therefore, for the following measurement
error variance model selection, we ignore misclassification errors. We use the model (3.5) for
estimation of measurement error variance.

4.4 Measurement Error Variance Model Selection

For the following model fitting, the dependent variable is squared differences between two

total BMD measurements, (Z;—Zp)?, not within sample variance SE=(Z,—Zp)2.
Since, the constant 2! does not effect on the test statistics or p-value for test Hy:7;= 0.

Dividing (Z,—Z2 ,2)2 by 2 causes the coefficient estimates and its standard errors to reduce
by half and the confidence interval too. We consider the same four demographic variables as
propensity model selection as explanatory variables. Exploratory analysis led to the final
model coefficient estimated reported in Table 4.4. The model giving Table 4.4 can be written
as the following

2,= 7o+ rix: + v Age20 + v Age30 + v Aged) + 7y AgedD. (4.1)
In model (4.1), the persons aged 60's and up are base group for age.

Table 44 shows that the measurement error variances increase as the —Z,. increase. For
age variable, Age20, Age30, Agé( are significant at @ = 0.05. Specially the persons aged
20's have smallest measurement error variance.

This estimated measurement error variances can be used for estimation of regression
coefficients, quantiles or disease-prevalence rates that may be seriously influenced by
measurement error.

5. Conclusion

5.1 Summary of Results

We have used the assumptions that the observed values are unbiased for the corresponding
true values and that measurement error variance is a linear function of true values. Under
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these assumptions and additional conditions, the ordinary least squared estimator of the
measurement error variance function parameter, 3’, is consistent provided the error scale
factor is small. This result is an extension of previous work by Carroll and Stefanski (1990)
on model based errors-in-variables estimation under small error approximations.

Next, we illustrated some of the proposed estimation methods with an analysis of bone
mineral density measurements from the U.S. Third National Health and Nutrition Examination
Survey (NHANES III). Detailed examination of model fitting results indicated that the
measurement error variance is a function of true value and age.

The original survey weight need to be adjusted to account for nonuniform mechanisms in
the selection of replicate-measurement subsample. In section 3, we considered the propensity
models for adjustment of original survey weights to account the probability that a given
sampled unit provided replicate measurement. We applied the proposed methods to develop a
propensity model for selection of replicate measurement subsamples in the NHANES III; and
to construct an associate weighting adjustments.

5.2 Future Research

The present modeling work can be extended in several possible directions. For example, we
assumed here that the measurement error variance is a linear function of the true value.
However, the method developed here can be extended to a non-linear function of true vaue
under a complex sampling design.

Appendix

Lemma A. Assume model (22) and the sampling design (D.1). Then, with additional

regularity conditions the remainder R in (3.3) is at most of order in probability n;m& for

i< 1.

Proof From the definition of moments in section 3.3, we can write such as
MXsXs = Mxx’l‘ Sauu‘i‘R

where R is a 2X2 matrix with elements R;; =0, Rp= Ry = 6]\’—121,0,(93/2 d,.) and
Ry = awlgw,(zx,gi/z ER )+321\r‘§‘lw,g,d,ld,2. To show R=0,(n7?8), it is
enough to examine each element of matrix R is at most of order in probability n;l/z&

The R); can be expressed by Ry = 0A;; where Ap = Nﬂlg“wt(gi/z ‘d;.). The Ay is
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a survey mean of £y, 'd,.. Then, we need to show Ap = Oﬂ(nEl/z). Under design (D.1)
and model (3.2), the expectations of Aj; is EDe=ED{N—1§w,.Q}/2EE( _a_’,.)}=0 since

Ed{ d;)=0. Hence, with additional regularity conditions A= 0,( n71?) (Shao, p.
210-211). Since Ry = 6Ap, R = 0, n;l/za)

Now, let us express Ry as Ry = 6Bp + 82Cp where Byp= N~ lzlw,(Zx,Q}’z_c?t.) and

C22=N_l§w,.9,d,la’,2. By the same discussions as A, Bzz=01,(n;1/z) and

8By = 0 n5'%8).
Under design (D.1) and model (2.2), the expectation of Cy is

E(Cp) = Eo{ N 20,2, Edud )} =0 since Eddndp) = Edu)Edy) =0. By

the similar discussions as Ay, Cyp= 0)(n5"?) and 6°Cy = O0,(nz"26%).

Since Ry = 0Byp+8Cy Ry = 0,(n5'28) + 0 (n526%) = O,(max{ny'2s, ny'26%)).
Thus Ry = 0,(n7"28) for 8<1 and Ry = 0,(n5?6%) for 6> 1.

For large npg, the effect of the size of & on the convergence rate is relatively small. Hence,

from the main body of text we considered that the order of R is R = O, nE”Z d).
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