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ON THE SINGULAR VALUES OF THE QUOTIENT
OF DRINFELD DISCRIMINANT FUCTIONS

SEUNGJAE LEE AND SUNGHAN BAE

ABSTRACT. This paper is concerned with the prime factorization of the
quotient of Drinfeld discriminant functions in an analytic way.

0. Introduction

The study of Drinfeld modules of rank 2 as an analogy with elliptic
curves is an interesting subject. The prime factorization of the values
A(az)/A(z) for imaginary quadratic z, was done completely by Hasse
in the number field case. In [3], the general tables of its prime factoriza-
tion is given. The analogy in the function field case is also interesting.
When o is the full ring of integers of a global fuction field &, the results
are given by Hayes using sgn-normalized Drinfeld module which has no
counterpart in the classical case.(cf [6] 5.6 and [7] 4.18) In this article we
get the same results for orders of imaginary quadratic function fields in
an analytic way using Drinfeld modular functions.

1. Preliminaries

Let K be the rational function field F¢(T') over the finite field F,. Let
K, be the completion of i at oo = (1/T) and C the completion of the
algebraic closure of K. Put 4 = F,[T)].
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in M3(A), the set of 2 x 2 matrices with entries in A, is called primitive
if g.c.d.(a,b,c,d) = 1. Let n be a monic polynomial in A. Define

A = {a € My(A4)|det o = un for some p € F;.a is primitive}.
Then
I'=GLy(A) = {v € My(A)|dety € F}
acts on A}, by left or right multiplication. Following the classical method

in (8], it is easy to see that I' operates left transitively on the right I'-
cosets and also right transitively on the left I-cosets of A*. In (2], the

elements i
a b
0 d

in M3(A) with a and d monic, ad = n and deg b < deg d form distinet
left I'-coset representatives of AX.

For any rank 2 A-lattice A, let ¢* be the Drinfeld module of rank 2
corresponding to A. For z € Q = C' — IV, we also denote the Drinfeld
module of rank 2 corresponding to the lattice [1,z] by ¢*. Write

% =TX + g(A)X9 + A(A)XT,
with g(A), A(A) € C. The j-invariant j(A) is defined to be gAY /A(A).
In case A = [2,1], g(A), A(A) and j(A) are denoted simiply by g(z), A=)
and j(z).

Let L = 7A be the rank 1 A-lattice in C associated to the Carlitz
module

pr(X)=TX + X1,

Put t = #(z) = e (#z), where ¢ is defined by
er(z)=z J[ 12/
AEL—{0}

By a modular function we mean a meromorphic function on € invariant
under I' and having t-expansions at infinity. Then J 1s a modular function
and holomorphic on Q2. It can be shown that j is of the form

1
_», -+ /I(.S).

where s = t971 and % is a power series with coefficients in A, using the
result in [4],(6.6),(6.7). Because the only modular functions holomorphic
on both ) and infinity are constants, we get
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THEOREM 1.1. Let f be a modular function which is holomorphic on
) with a meromorphic s-expansion

f= Z cis'.

Then f is a polynomial in j with coefficients in the module generated
by c; over A.

THEOREM 1.2 ([2], (2.5)). If = is imaginary quadratic, that is K(z)
is a quadratic extension of I where oo does not split complitely, then
1(2) is integral over A.

Let k be an imaginary quadratic extension field of I, and o} = [z, 1]
be the ring of integers in k. By an order o in k, we mean a subring of oy
whose dimension over 4 is two. Let ¢ be the unigque monic polynomial
in A such that 0N Az = Acz. Then it can be shown that o = [cz,1]. The
number c¢ is called the conductor of 0. Let a be an o-ideal. We shall say
that ais prime to ¢ if either a+co = o0 or a+coy = 0. The two conditions
are actually equivalent. Following the classical method( [8],p92). we have

THEOREM 1.3. There is a multiplicative bijection between the monoid
of o —ideals prime to ¢ and the monoid of o-ideals prime to ¢. If we let
Ii(c) be the set of oy-ideals prime to ¢, and I, c) be the set of o-ideals
prime to ¢, such inverse two mappings are give.1 by

a—ano foraée Ij(c) and

a — aox for a € I(c).

2. Integrality of A(az)/A(z)

A(z)

In this section, we want to describe the values for imaginary

quadratic z and « € M,(4). Define

YalA) = (det 0)42" ——-———
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for a given rank 2 A-lattice A = [21,22]. In case A = (1,z], it will be
also denoted by ¢,(z). For any constant ¢ € A, we have YealA) =
cqz”lcpa(/\), so it suffices to calculate its value for any primitive matrix
a. We may assume that a is primitive. The multiplication by an element
in I' does not change the lattice A, so we may assutae that « is a left
I-coset representative of A%. In the following, « is in triangular form

- fa b
@ 0 d

with @ and d monic, ad = n and deg b <deg d, unless otherwise specified.

Then
Palz) = (det a’)qz_ld,““/?“”‘ﬁ_(fﬁ — g ! Alaz)

Alz) Alz)

Let t,s =171 and 7 be as in §1. Then the s-expansion for A is of the

form
X
- :
A=qgl"! E a;s'

1=1
with a; = —1 and a, € A.(e.g.[4])
Let B be a ring and B((t1,t2,...,ta)) be the ring of meromorphic
power series with n-variables.

LEMMA 2.1. Let

Z aity € B((;))j =1,..., M
i=—N
be given. Put
1\1 (% @)
fittan) = TJ0Y aith).
Jj=1 i=—N
Write
A oc

fitic ) = [TV S Fe
j=1 =0

where f; is the sum of monomials of t,, . .. tar in f, with homogeneous
degree :. Then f; is a polynomial of the elementary symmetric polyno-
mials of ty,...,ta with coefficients in B.
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PROOF. We may assume that each > .- a,'t;-,j =1...,Mis a

) - . M k+MN
finite sum because each f} is determined by []'_, Zif_ N a;t;. For any
= =

permutation o of the integers 1,..., M, it is eusy to see that

filto(rys - toqan) = filti, ... tm).

This proves our lemma.

Define the a-th inverse cyclotomic polynomial f,(X) € A[X] for a €
A, not necessarily monic, by

fa(—Y) = Pu(-‘:”] )-Yla'

where |a| = ¢4¢6¢. Then it is easy to see that the leading coefficient of a

1s the constant term of f,(X') and a is the leading coefficient of f,(X).
In particular, if @ is monic, the constant term of f,(X) is 1. For a monic
element n € A, let

S={r= ([1) (1'> ya € A, dega < degn}.

Then the number of elements in S is |n|.

LEMMA 2.2, Hyest(:{f) = t(z).

PRrooF. Comparing the roots of polynomials, it is easy to see that

- . Ta -1
.fn(}\ J=n H X+ (f:ir/\ (“—))
n
dega<degn,a#0

Since n is monic, the constant term of f,(X ) ic 1. Thus we have

(T )

dega <degn,u#0
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It follows that

REE) = T (G (e ()

dega<degn,a#0

— C”A(%{)t( n)+l
=n H ir(l)

dega<degn,a0

(
T (e (5)

dega<degn,a#0

It is easy to see that

for any @ € A. Then

OG- I (=)

~YES dega<degn

- t2)
= (—) z . Ta
" d“-'8"<g%n.i;é0 1 + t(; )Cri'A(T)
f(_-,:)—v)l”l

AT

LEMMA 2.3. The elementary svmmetric polynomials of t(1X), 5 € S,
lie in A[t(z)].
ProoF. Write

degn
Pu(X) =nX + Z a, X

=1

- I (e ()

dega <degn
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Then
IT(x+ea ()= T (vrea(F)reea ()
YES dega<degn i

_— (\ + (‘%))
n (X + €54 (Z%{))

+(:Zgl’1 a; (‘Y"i + (6’7‘4 (%))q) |

Comparing the coefficients of X* we have that the symmetric polyno-
mials of ez 4(F),y € S. lie in A, except H-,e's era( TE) = 1/t(z)(e.g.
Lemmal.l). Since tH(L) = pal T )7L, it is easy to see that our lemma

holds.

I

THEOREM 2.4. The function p, is integral over A[A,][j], where A,
1s the set of all n-torsion points of the Calitz module p.

PROOF. Let ¢(n) be the number of representatives of the left cosets
of primitive matrices in M5(A) and let . ..., ay(,) be representatives.
Since @q(77) = Ya~(2) for v € GLy(A) and 4 permutes the coset rep-
resentatives a;, any symmetric function of 4, is fixed by the elements
in GLy(A). Since A does not vanish on Q. ., () is holomorphic on .
The (£ )-expansion of #{ “—:dﬁ) 1s given hy

2
a

t(a2+l))_ H( ==
d L+ ena(ZE)H(42)
= yle?]

B f(lz(f(%)) + flﬁ_,;( ir,{:b )1‘(7:)_)1(” € ‘_1[‘\'7][[“;)]]

Note that the constant term in the denominator of above equation lies

in Fg, so it has the inverse in A[A,][[t(£)]]. We also have the following

t(£)-expansion of
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Since n is monic, the constant term of t(z) in the t(Z)-expansion is 1.

Put

o

A*(z) =: #l_qQA(:) = Z a;it',

i=q—1
with a; € A,a4-1 = —1. Then

*az+b
aqz—lA( d )

Palz) = A*(z)

_ e D imyt a,—t(%g )i
Doy @it(z)
Thus pa(z) has a t(Z)-expansion with coefficients in A[A,]. Let f be
any symmetric polynomml of pa;(z).i =1,...,9(n). Then f is fixed by
GL3(A), fis holomorphic on  and f has a meromorp]nc t( £ )-expansion
with coefficients in A[A,]. Write

-yl
with ¢; € A[A,]. Then

=TIt =11 (Z al (7_))

~ES ~ES

By Lemma 2.1 and Lemma 2.3, fI"! can be written as

Z dit(=)",

with d; € A[A,]. Since f1"! is fixed by

1 0 .
<0 7).7€]Fq.

d; = 0if 7 is not divisible by ¢ — 1. Thus f/"! has a meromorphic
s-expansion. Then £l lies in A[\,][j] by Theorem 1.1, so we have
l

w(n) |

H (‘Y - 990‘.'(:)) € A[‘\"][IH‘X}

=1

This completes the proof.

Applying Theorem 1.2 and Therem 2.4, we have
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THEOREM 2.5. For imaginary quadratic z, the values po(z) are in-
tegral over A.

Note that Theorem 2.4 and Theorem 2.5 hold even if « is not primi-
tive.

3. Prime factorization of »,{z)

In this section, we want to describe the prime factorization of the
values @q(z) for imaginary quadratic z.

THEOREM 3.1. For imaginary quadratic z, the value p,(z) is Integral
. 0 2___1
and divides {det o)? !,

PRrRoOOF. It suffices to check the divisibility. Let a’ = na™! with

n = det a. Then det o’ = n. Since aa’ = nl and A is a modular form

of weight ¢ — 1, we have
() (2)

-

Then

Ao (7))

>(+(5))

(det o)

= (det a‘)(’z_l.
Since both p. | a Z and 2, : are integral over A4, we get
1 1 &
the result.

By an algebraic integer, we mean an element in some algebraic exten-
sion field over I’ which is integral over 4. We use the following notations.
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If £ is an algebraic integer and a is an ideal in the ring of the integers
of an algebraic extension field A of IV, we write £ ~ a to mean that
£or = aor in some algebraic extension field L of Af. We then say that
§ and a are associated. Similarly if £; and &, ave algebraic integers, we
write £; & £, to mean that & /€ is a unit. In this case, we say that £;
and & are associated.

Let a be a proper o-ideal. Define Na to be the unigue monic generator
of the ideal generated by {Normy,cala € a}. Then we have

q(leg(Nn) =(0: Cl).

If b = [z1, 22] is another proper o-ideal, then we can find « € M,(A) such
21
z9
an element in GLy(A4), the following definition is well-defined.

%(b)_'y"’((:z))_(m)] Alln)

THEOREM 3.2. Let p(T) be a monic prime element in A which splits
completely in k and dose not divide the couductor ¢ of 9. Let p(T)o =pp’
be the prime factorization in o. Theu

that « 1s a basis of ab. Since a is unique up to multiplication by

¢i 1 A(pa) ~ p,qz_I.

epla) = p(T) o)

Note that by Theorem 1.3. both p and p' can be viewed as ideals in the
ring of integers oy,.

PROOF. Choose A € p — p? prime to ¢ such that \ is not contained
inp'. Put b= XAp~!'. Then bisa proper o-ideal prime to p(T) such that
bp = Ao is principal. Then

2, A(bap) 2_, A(pa)
, = Np? 122 F7 ¢ -1ZA 0
eo(pa)pp(a) = N A(pa)p(T 4v(a)
2 .A(/\Cl)
= (NE o -l
(Nbp(T)) Aa)

_ [ Nbp(T) «-l
- A '
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By Theorem 3.1, pu(pa) is an algebraic integer dividing Nb¢" 1 which
is prime to p(T'), and y(a) is an algebraic integer dividing p(ﬁT)qz—l.
Therefore p,(a) is associated to the product of the prime factors of p, p’

which divide (ﬁ%@)qz_l. This proves our theorem.

COROLLARY 3.3. Let p(T) be a monic prime element in A such that
1ts prime factorization in k is p. Suppose that p(T) does not divide the

conductor ¢ of 0. Then pq(p) ~ p‘fg_] for any proper o-ideal a.
@ v prop

PROOF. Choose A € p—p? prime to ¢. The rest are exactly the same
as the proof of above theorem.

We know that representative matrices of I"\A;(T) can be selected as

pT) 0
ap(T) = ( 0 1)

(1 a;
;= 0 pT) )

with deg a; < deg p(T), i =2.3..... w(P(T)).

LEMMA 3.4. Let p(T) be a monic irreducible polvnomial in A, and
let = be imaginary quadratic. Then

2_
flz) = a;o,,‘,,‘)(:)HQa,»(:) =p(T)" .
PROOF. The s-expansion for »,, is given by

e L stag vk
pRye “k"’(p(—T')L)

Pai = ,
“ S e aks(z)k

with a; € A and a; = —1. The s-expansion for Payry 15 given by

‘ = p(T)"' 1 > ey aks(p(T)z)t
Popir) 220:1 P :)k .
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We have the following #( 07 ) expansions.

t<z+ai>_§:(_1)k . (am)kt( ;—)k-i»l
pT)) = @)\

=1 - + higher terms.
(1)(T )) &

t( (T))Iv T)*| NSV
T il - = ( - ) + nigher terms.
He(T)z) = Joermz(H55m ) (T) 5
t(;)lP(Tﬂ |p(T
Hz) = A ICa— ( ) + higler terms.
fP(T (tGem ,,(1

Since s = t77", the leading term of 2, is given by

\ g1
(=1)t (—) =D (T
p(T) ——f( Iy )
-

, N [p(T)](g—1 o(T)
(=1t (577

The leading term of o, ;. is

(—1¢ ( '"‘“)IW v (=1)(1p(TY? |~ Ip(T)])
- ?T ) > q- P —Ip
p(T)* r) = p(T)! -lf(—\

.\ (D=1 p(T))
=1 ()

Hence the leading term of ¢, O i vai(2) s

2\t =fperipy el s/ =\ LU=l
t| — p(Ty = r(——)
(P(T)) p(T)

=p(T)? "%,

which is a constant. Following the proof of Theorem 2.4, f(z)P(T) ljes
in A[A,(m)][7] and it has a holomophic #( z)-expansion. Thus it shoud be
constant and this completes the proof.
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THEOREM 3.5. Let p(T),0.a = [z;.22] and p(T)o = pp’' be as in
Theorem 3.2. Let 3y and 3, be matrices of determinant p(T) such that
51 (21 ) and j3, (f] ) are bases of pa and p'a respectively. Ifa € My(A)

2 2
has determinant p(T) and « does not lie in the orbit of 8) or 32 under

F'=GLy(A). then p, (f]> 1s a unit.
2

PROOF. It is easy to see that if any integral matrix has determinant
p(T), then it is '-equivalent to a representive for left cosets of I in A;(T)'

(2o

all other terms in the product of lenuna 3.4 cannot have prime factors.

Z1 . .
Thus ¢4 ( ) is a unit.

Since

L8]
[}

L83
o =

1> ~ ' T = (T,

2

i
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