ON THE SINGULAR VALUES OF THE QUOTIENT OF DRINFELD DISCRIMINANT FUCTIONS

SEUNGIAE LEE AND SUNGHAN BAE

ABSTRACT. This paper is concerned with the prime factorization of the quotient of Drinfeld discriminant functions in an analytic way.

0. Introduction

The study of Drinfeld modules of rank 2 as an analogy with elliptic curves is an interesting subject. The prime factorization of the values $\Delta(\alpha z)/\Delta(z)$ for imaginary quadratic z, was done completely by Hasse in the number field case. In [3], the general tables of its prime factorization is given. The analogy in the function field case is also interesting. When $\mathfrak o$ is the full ring of integers of a global fuction field k, the results are given by Hayes using sgn-normalized Drinfeld module which has no counterpart in the classical case.(cf [6] 5.6 and [7] 4.18) In this article we get the same results for orders of imaginary quadratic function fields in an analytic way using Drinfeld modular functions.

1. Preliminaries

Let K be the rational function field $\mathbb{F}_q(T)$ over the finite field \mathbb{F}_q . Let K_{∞} be the completion of K at $\infty = (1/T)$ and C the completion of the algebraic closure of K_{∞} . Put $A = \mathbb{F}_q[T]$.

An element

$$\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Received March 21, 1995. Revised September 28, 1995.

1991 AMS Subject Classification: 11G09.

Key words: discriminant, Drinfeld module.

Partially Supproted by Non Directed Research Fund, Korea Research Foundation, 1993.

in $M_2(A)$, the set of 2×2 matrices with entries in A, is called *primitive* if g.c.d.(a, b, c, d) = 1. Let n be a monic polynomial in A. Define

 $\Delta_n^* = \{ \alpha \in M_2(A) | \det \alpha = \mu n \text{ for some } \mu \in \mathbb{F}_q^*, \alpha \text{ is primitive} \}.$

Then

$$\Gamma = GL_2(A) = \{ \gamma \in M_2(A) | \det \gamma \in \mathbb{F}_q^* \}$$

acts on Δ_n^* by left or right multiplication. Following the classical method in [8], it is easy to see that Γ operates left transitively on the right Γ -cosets and also right transitively on the left Γ -cosets of Δ_n^* . In [2], the elements

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

in $M_2(A)$ with a and d monic, ad = n and deg $b < \deg d$ form distinct left Γ -coset representatives of Δ_n^* .

For any rank 2 A-lattice Λ , let ϕ^{Λ} be the Drinfeld module of rank 2 corresponding to Λ . For $z \in \Omega = C - K_{\infty}$, we also denote the Drinfeld module of rank 2 corresponding to the lattice [1, z] by ϕ^z . Write

$$\phi_T^{\Lambda} = TX + g(\Lambda)X^q + \Delta(\Lambda)X^{q^2},$$

with $g(\Lambda)$, $\Delta(\Lambda) \in C$. The *j*-invariant $j(\Lambda)$ is defined to be $g^{q+1}(\Lambda)/\Delta(\Lambda)$. In case $\Lambda = [z, 1]$, $g(\Lambda)$, $\Delta(\Lambda)$ and $j(\Lambda)$ are denoted simply by g(z), $\Delta(z)$ and j(z).

Let $L = \bar{\pi}A$ be the rank 1 A-lattice in C associated to the Carlitz module

$$\rho_T(X) = TX + X^q.$$

Put $t = t(z) = e_L^{-1}(\bar{\pi}z)$, where e_L is defined by

$$e_L(z) = z \prod_{\lambda \in L - \{0\}} (1 - z/\lambda).$$

By a modular function we mean a meromorphic function on Ω invariant under Γ and having t-expansions at infinity. Then j is a modular function and holomorphic on Ω . It can be shown that j is of the form

$$\frac{1}{s} + h(s),$$

where $s = t^{q-1}$ and h is a power series with coefficients in A, using the result in [4],(6.6),(6.7). Because the only modular functions holomorphic on both Ω and infinity are constants, we get

Theorem 1.1. Let f be a modular function which is holomorphic on Ω with a meromorphic s-expansion

$$f = \sum c_i s^i.$$

Then f is a polynomial in j with coefficients in the module generated by c_i over A.

THEOREM 1.2 ([2], (2.5)). If z is imaginary quadratic, that is K(z) is a quadratic extension of K where ∞ does not split complitely, then j(z) is integral over A.

Let k be an imaginary quadratic extension field of K, and $\mathfrak{o}_k = [z,1]$ be the ring of integers in k. By an order \mathfrak{o} in k, we mean a subring of \mathfrak{o}_k whose dimension over A is two. Let c be the unique monic polynomial in A such that $\mathfrak{o} \cap Az = Acz$. Then it can be shown that $\mathfrak{o} = [cz, 1]$. The number c is called the *conductor* of \mathfrak{o} . Let \mathfrak{a} be an \mathfrak{o} -ideal. We shall say that \mathfrak{a} is prime to c if either $\mathfrak{a} + c\mathfrak{o} = \mathfrak{o}$ or $\mathfrak{a} + c\mathfrak{o}_k = \mathfrak{o}$. The two conditions are actually equivalent. Following the classical method([8],p92), we have

THEOREM 1.3. There is a multiplicative bijection between the monoid of \mathfrak{o}_k -ideals prime to c and the monoid of \mathfrak{o} -ideals prime to c. If we let $I_k(c)$ be the set of \mathfrak{o}_k -ideals prime to c, and $I_{\mathfrak{o}}(c)$ be the set of \mathfrak{o} -ideals prime to c, such inverse two mappings are given by

$$\mathfrak{a} \to \mathfrak{a} \cap \mathfrak{o} \text{ for } \mathfrak{a} \in I_k(c) \text{ and }$$

$$\mathfrak{a} \to \mathfrak{ao}_k \text{ for } \mathfrak{a} \in I_{\mathfrak{o}}(c).$$

2. Integrality of $\Delta(\alpha z)/\Delta(z)$

In this section, we want to describe the values $\frac{\Delta(\alpha z)}{\Delta(z)}$ for imaginary quadratic z and $\alpha \in M_2(A)$. Define

$$\varphi_{\alpha}(\Lambda) = (\det \alpha)^{q^2 - 1} \frac{\Delta\left(\alpha\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right)}{\Delta\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right)},$$

for a given rank 2 A-lattice $\Lambda = [x_1, x_2]$. In case $\Lambda = [1, z]$, it will be also denoted by $\varphi_{\alpha}(z)$. For any constant $c \in A$, we have $\varphi_{c\alpha}(\Lambda) = c^{q^2-1}\varphi_{\alpha}(\Lambda)$, so it suffices to calculate its value for any primitive matrix α . We may assume that α is primitive. The multiplication by an element in Γ does not change the lattice Λ , so we may assume that α is a left Γ -coset representative of Δ_n^* . In the following, α is in triangular form

$$\alpha = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

with a and d monic, ad = n and deg $b < \deg d$, unless otherwise specified. Then

$$\varphi_{\alpha}(z) = (\det \alpha)^{q^2 - 1} d^{-(q^2 - 1)} \frac{\Delta(\alpha z)}{\Delta(z)} = a^{q^2 - 1} \frac{\Delta(\alpha z)}{\Delta(z)}.$$

Let $t, s = t^{q-1}$ and $\bar{\pi}$ be as in §1. Then the s-expansion for Δ is of the form

$$\Delta = \bar{\pi}^{q^2 - 1} \left(\sum_{i=1}^{\infty} a_i s^i \right)$$

with $a_1 = -1$ and $a_i \in A.(e.g.[4])$

Let B be a ring and $B((t_1, t_2, \ldots, t_M))$ be the ring of meromorphic power series with n-variables.

LEMMA 2.1. Let

$$\sum_{i=-N}^{\infty} a_i t_j^i \in B((t_j)), j = 1, \dots, M$$

be given. Put

$$f(t_1, \dots, t_M) = \prod_{j=1}^{M} (\sum_{i=-N}^{\infty} a_i t_j^i).$$

Write

$$f(t_1, \dots, t_M) = \prod_{j=1}^{M} t_j^{-N} \sum_{i=0}^{\infty} f_i,$$

where f_i is the sum of monomials of t_1, \ldots, t_M in f, with homogeneous degree i. Then f_i is a polynomial of the elementary symmetric polynomials of t_1, \ldots, t_M with coefficients in B.

PROOF. We may assume that each $\sum_{i=-N}^{\infty} a_i t_j^i, j = 1, \ldots, M$ is a finite sum because each f_k is determined by $\prod_{j=1}^{M} \sum_{i=-N}^{k+MN} a_i t_j^i$. For any permutation σ of the integers $1, \ldots, M$, it is easy to see that

$$f_i(t_{\sigma(1)},\ldots,t_{\sigma(M)})=f_i(t_1,\ldots,t_M).$$

This proves our lemma.

Define the a-th inverse cyclotomic polynomial $f_a(X) \in A[X]$ for $a \in A$, not necessarily monic, by

$$f_a(X) = \rho_a(X^{-1})X^{|a|}$$

where $|a| = q^{\deg a}$. Then it is easy to see that the leading coefficient of a is the constant term of $f_a(X)$ and a is the leading coefficient of $f_a(X)$. In particular, if a is monic, the constant term of $f_a(X)$ is 1. For a monic element $n \in A$, let

$$S = \{ \gamma | \gamma = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, a \in A, \deg a < \deg n \}.$$

Then the number of elements in S is |n|.

LEMMA 2.2. $\prod_{\gamma \in S} t(\frac{\gamma z}{z}) = t(z)$.

PROOF. Comparing the roots of polynomials, it is easy to see that

$$f_n(X) = n \prod_{\deg a < \deg n, a \neq 0} \left(X + \left(e_{\bar{\pi}A} \left(\frac{\bar{\pi}a}{n} \right) \right)^{-1} \right)$$

Since n is monic, the constant term of $f_n(X)$ is 1. Thus we have

$$n\left(\prod_{\deg a < \deg n, a \neq 0} \left(\epsilon_{\bar{\pi}A} \left(\frac{\bar{\pi}a}{n}\right)\right)^{-1}\right) = 1.$$

It follows that

$$f_{n}\left(t\left(\frac{z}{n}\right)\right) = n \prod_{\substack{\deg a < \deg n, a \neq 0}} \left(t\left(\frac{z}{n}\right) + \left(e_{\bar{\pi}A}\left(\frac{\bar{\pi}a}{n}\right)\right)^{-1}\right)$$

$$= n \prod_{\substack{\deg a < \deg n, a \neq 0}} \frac{e_{\bar{\pi}A}\left(\frac{\bar{\pi}a}{n}\right)t\left(\frac{z}{n}\right) + 1}{e_{\bar{\pi}A}\left(\frac{\bar{\pi}a}{n}\right)}$$

$$= \prod_{\substack{\deg a < \deg n, a \neq 0}} \left(e_{\bar{\pi}A}\left(\frac{\bar{\pi}a}{n}\right)t\left(\frac{z}{n}\right) + 1\right).$$

It is easy to see that

$$t\left(\frac{z+a}{n}\right) = \frac{t(\frac{z}{n})}{1 + t(\frac{z}{n})\epsilon_{\bar{\pi}A}(\frac{\bar{\pi}a}{n})}$$

for any $a \in A$. Then

$$\begin{split} \prod_{\gamma \in S} t \left(\frac{\gamma z}{n} \right) &= \prod_{\deg a < \deg n} t \left(\frac{z + a}{n} \right) \\ &= t \left(\frac{z}{n} \right) \prod_{\deg a < \deg n, i \neq 0} \frac{t(\frac{z}{n})}{1 + t(\frac{z}{n})e_{\tilde{\pi}A}(\frac{\tilde{\pi}a}{n})} \\ &= \frac{t(\frac{z}{n})^{|n|}}{f_n(t(\frac{z}{n}))} \\ &= t(z). \end{split}$$

LEMMA 2.3. The elementary symmetric polynomials of $t(\frac{\gamma z}{n}), \gamma \in S$, lie in A[t(z)].

PROOF. Write

$$\rho_n(X) = nX + \sum_{i=1}^{\deg n} a_i X^{q^i}$$

$$= \prod_{\deg n \in \operatorname{deg} n} \left(X + e_{\tilde{\pi}A} \left(\frac{\tilde{\pi}a}{n} \right) \right)$$

Then

$$\prod_{\gamma \in S} \left(X + e_{\bar{\pi}A} \left(\frac{\bar{\pi}\gamma z}{n} \right) \right) = \prod_{\text{deg}a < \text{deg}n} \left(X + e_{\bar{\pi}A} \left(\frac{\bar{\pi}z}{n} \right) + \epsilon_{\bar{\pi}A} \left(\frac{\bar{\pi}a}{n} \right) \right) \\
= \rho_n \left(X + e_{\bar{\pi}A} \left(\frac{\bar{\pi}z}{n} \right) \right) \\
= n \left(X + \epsilon_{\bar{\pi}A} \left(\frac{\bar{\pi}z}{n} \right) \right) \\
+ \sum_{i=1}^{\text{deg}n} a_i \left(X^{q^i} + \left(e_{\bar{\pi}A} \left(\frac{\bar{\pi}z}{n} \right) \right)^{q^i} \right).$$

Comparing the coefficients of X^k , we have that the symmetric polynomials of $e_{\bar{\pi}A}(\frac{\bar{\pi}\gamma z}{n}), \gamma \in S$, lie in A, except $\prod_{\gamma \in S} e_{\bar{\pi}A}(\frac{\bar{\pi}\gamma z}{n}) = 1/t(z)$ (e.g. Lemmal.1). Since $t(\frac{\gamma z}{n}) = e_{\pi A}(\frac{\bar{\pi}\gamma z}{n})^{-1}$, it is easy to see that our lemma holds.

THEOREM 2.4. The function φ_{α} is integral over $A[\Lambda_n][j]$, where Λ_n is the set of all n-torsion points of the Calitz module ρ .

PROOF. Let $\psi(n)$ be the number of representatives of the left cosets of primitive matrices in $M_2(A)$ and let $\alpha_1, \ldots, \alpha_{\psi(n)}$ be representatives. Since $\varphi_{\alpha}(\gamma z) = \varphi_{\alpha\gamma}(z)$ for $\gamma \in GL_2(A)$ and γ permutes the coset representatives α_i , any symmetric function of φ_{α_i} is fixed by the elements in $GL_2(A)$. Since Δ does not vanish on Ω , $\varphi_{\alpha_i}(z)$ is holomorphic on Ω . The $t(\frac{z}{n})$ -expansion of $t(\frac{az+b}{d})$ is given by

$$\begin{split} t\left(\frac{az+b}{d}\right) &= \frac{t(\frac{a^2z}{n})}{1+\epsilon_{\tilde{\pi}A}(\frac{\tilde{\pi}ab}{n})t(\frac{a^2z}{n})} \\ &= \frac{t(\frac{z}{n})^{|a^2|}}{f_{a^2}(t(\frac{z}{n}))+\epsilon_{\tilde{\pi}A}(\frac{\tilde{\pi}ab}{n})t(\frac{z}{n})^{|a^2|}} \in A[\Lambda_n][[t(\frac{z}{n})]]. \end{split}$$

Note that the constant term in the denominator of above equation lies in \mathbb{F}_q^* , so it has the inverse in $A[\Lambda_n][[t(\frac{z}{n})]]$. We also have the following $t(\frac{z}{n})$ -expansion of

$$t(z) = \frac{t(\frac{z}{n})^{|n|}}{f_n(t(\frac{z}{n}))} \in A[[t(\frac{z}{n})]].$$

Since n is monic, the constant term of t(z) in the $t(\frac{z}{n})$ -expansion is 1. Put

$$\Delta^*(z) =: \bar{\pi}^{1-q^2} \Delta(z) = \sum_{i=q-1}^{\infty} a_i t^i,$$

with $a_i \in A$, $a_{q-1} = -1$. Then

$$\varphi_{\alpha}(z) = a^{q^2 - 1} \frac{\Delta^*(\frac{az+b}{d})}{\Delta^*(z)}$$
$$= a^{q^2 - 1} \frac{\sum_{i=q-1}^{\infty} a_i t(\frac{az+b}{d})^i}{\sum_{i=q-1}^{\infty} a_i t(z)^i}.$$

Thus $\varphi_{\alpha}(z)$ has a $t(\frac{z}{n})$ -expansion with coefficients in $A[\Lambda_n]$. Let f be any symmetric polynomial of $\varphi_{\alpha_i}(z)$, $i = 1, \ldots, \psi(n)$. Then f is fixed by $GL_2(A)$, f is holomorphic on Ω and f has a meromorphic $t(\frac{z}{n})$ -expansion with coefficients in $A[\Lambda_n]$. Write

$$f = \sum c_i t \left(\frac{z}{n}\right)^i,$$

with $c_i \in A[\Lambda_n]$. Then

$$|f^{|n|} = \prod_{\gamma \in S} f(\gamma z) = \prod_{\gamma \in S} \left(\sum c_i t \left(\frac{\gamma z}{n} \right)^i \right).$$

By Lemma 2.1 and Lemma 2.3, $f^{[n]}$ can be written as

$$\sum d_i t(z)^i,$$

with $d_i \in A[\Lambda_n]$. Since $f^{|n|}$ is fixed by

$$\begin{pmatrix} 1 & 0 \\ 0 & \gamma \end{pmatrix}, \gamma \in \mathbb{F}_q^*,$$

 $d_i = 0$ if i is not divisible by q - 1. Thus $f^{[n]}$ has a meromorphic s-expansion. Then $f^{[n]}$ lies in $A[\lambda_n][j]$ by Theorem 1.1, so we have

$$\left(\prod_{i=1}^{\psi(n)} (X - \varphi_{\alpha_i}(z))\right)^{|n|} \in A[\Lambda_n][j][X].$$

This completes the proof.

Applying Theorem 1.2 and Therem 2.4, we have

THEOREM 2.5. For imaginary quadratic z, the values $\varphi_{\alpha}(z)$ are integral over A.

Note that Theorem 2.4 and Theorem 2.5 hold even if α is not primitive.

3. Prime factorization of $\varphi_{\alpha}(z)$

In this section, we want to describe the prime factorization of the values $\varphi_{\alpha}(z)$ for imaginary quadratic z.

THEOREM 3.1. For imaginary quadratic z, the value $\varphi_{\alpha}(z)$ is integral and divides $(\det \alpha)^{q^2-1}$.

PROOF. It suffices to check the divisibility. Let $\alpha' = n\alpha^{-1}$ with $n = \det \alpha$. Then $\det \alpha' = n$. Since $\alpha \alpha' = nI$ and Δ is a modular form of weight $q^2 - 1$, we have

$$\Delta\left(\alpha\alpha'\begin{pmatrix}z\\1\end{pmatrix}\right) = n^{-(q^2-1)}\Delta\left(\begin{pmatrix}z\\1\end{pmatrix}\right).$$

Then

$$\varphi_{\alpha'}\left(\alpha \begin{pmatrix} z \\ 1 \end{pmatrix}\right) \varphi_{\alpha}\left(\begin{pmatrix} z \\ 1 \end{pmatrix}\right)$$

$$= (\det \alpha')^{q^{2}-1} \frac{\Delta \left(\alpha'\alpha \begin{pmatrix} z \\ 1 \end{pmatrix}\right)}{\Delta \left(\alpha \begin{pmatrix} z \\ 1 \end{pmatrix}\right)} (\det \alpha)^{q^{2}-1} \frac{\Delta \left(\alpha \begin{pmatrix} z \\ 1 \end{pmatrix}\right)}{\Delta \left(\begin{pmatrix} z \\ 1 \end{pmatrix}\right)}$$

$$= n^{q^{2}-1}$$

$$= (\det \alpha)^{q^{2}-1}.$$

Since both $\varphi_{\alpha'}\left(\alpha\begin{pmatrix}z\\1\end{pmatrix}\right)$ and $\varphi_{\alpha}\left(\begin{pmatrix}z\\1\end{pmatrix}\right)$ are integral over A, we get the result.

By an algebraic integer, we mean an element in some algebraic extension field over K which is integral over A. We use the following notations.

If ξ is an algebraic integer and \mathfrak{a} is an ideal in the ring of the integers of an algebraic extension field M of K, we write $\xi \approx \mathfrak{a}$ to mean that $\xi \mathfrak{o}_L = \mathfrak{ao}_L$ in some algebraic extension field L of M. We then say that ξ and \mathfrak{a} are associated. Similarly if ξ_1 and ξ_2 are algebraic integers, we write $\xi_1 \approx \xi_2$ to mean that ξ_1/ξ_2 is a unit. In this case, we say that ξ_1 and ξ_2 are associated.

Let \mathfrak{a} be a proper \mathfrak{o} -ideal. Define $\mathbb{N}\mathfrak{a}$ to be the unique monic generator of the ideal generated by $\{Norm_{k/K}a|a\in\mathfrak{a}\}$. Then we have

$$q^{\deg(\mathbb{H}\mathfrak{a})} = (\mathfrak{o} : \mathfrak{a}).$$

If $\mathfrak{b} = [z_1, z_2]$ is another proper \mathfrak{o} -ideal, then we can find $\alpha \in M_2(A)$ such that $\alpha \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ is a basis of \mathfrak{ab} . Since α is unique up to multiplication by an element in $GL_2(A)$, the following definition is well-defined.

$$\varphi_{\mathfrak{a}}(\mathfrak{b}) =: \varphi_{\alpha}\left(\left(\frac{z_1}{z_2} \right) \right) = (\mathbb{N}\mathfrak{a})^{q^2 - 1} \frac{\Delta(\mathfrak{a}\mathfrak{b})}{\Delta(\mathfrak{b})}$$

THEOREM 3.2. Let p(T) be a monic prime element in A which splits completely in k and dose not divide the conductor c of \mathfrak{s} . Let $p(T)\mathfrak{s} = \mathfrak{pp}'$ be the prime factorization in \mathfrak{s} . Then

$$\varphi_{\mathfrak{p}}(\mathfrak{a}) = p(T)^{q^2 - 1} \frac{\Delta(\mathfrak{pa})}{\Delta(\mathfrak{a})} \approx \mathfrak{p}'^{q^2 - 1}.$$

Note that by Theorem 1.3, both $\mathfrak p$ and $\mathfrak p'$ can be viewed as ideals in the ring of integers $\mathfrak o_k$.

PROOF. Choose $\lambda \in \mathfrak{p} - \mathfrak{p}^2$ prime to c such that λ is not contained in \mathfrak{p}' . Put $\mathfrak{b} = \lambda \mathfrak{p}^{-1}$. Then \mathfrak{b} is a proper \mathfrak{o} -ideal prime to p(T) such that $\mathfrak{bp} = \lambda \mathfrak{o}$ is principal. Then

$$\begin{split} \varphi_{\mathfrak{b}}(\mathfrak{p}\mathfrak{a})\varphi_{\mathfrak{p}}(\mathfrak{a}) &= \mathbb{N}\mathfrak{b}^{q^2-1}\frac{\Delta(\mathfrak{b}\mathfrak{a}\mathfrak{p})}{\Delta(\mathfrak{p}\mathfrak{a})}p(T)^{q^2-1}\frac{\Delta(\mathfrak{p}\mathfrak{a})}{\Delta(\mathfrak{a})} \\ &= (\mathbb{N}\mathfrak{b}p(T))^{q^2-1}\frac{\Delta(\lambda\mathfrak{a})}{\Delta(\mathfrak{a})} \\ &= \left(\frac{\mathbb{N}\mathfrak{b}p(T)}{\lambda}\right)^{q^2-1}. \end{split}$$

By Theorem 3.1, $\varphi_{\mathfrak{b}}(\mathfrak{pa})$ is an algebraic integer dividing $\mathbb{N}\mathfrak{b}^{q^2-1}$ which is prime to p(T), and $\varphi_{\mathfrak{p}}(\mathfrak{a})$ is an algebraic integer dividing $p(T)^{q^2-1}$. Therefore $\varphi_{\mathfrak{p}}(\mathfrak{a})$ is associated to the product of the prime factors of $\mathfrak{p}, \mathfrak{p}'$ which divide $(\frac{\mathbb{N}\mathfrak{b}p(T)}{\lambda})^{q^2-1}$. This proves our theorem.

COROLLARY 3.3. Let p(T) be a monic prime element in A such that its prime factorization in k is \mathfrak{p}^2 . Suppose that p(T) does not divide the conductor c of \mathfrak{o} . Then $\varphi_{\mathfrak{a}}(\mathfrak{p}) \approx \mathfrak{p}^{q^2-1}$ for any proper \mathfrak{o} -ideal \mathfrak{a} .

PROOF. Choose $\lambda \in \mathfrak{p} - \mathfrak{p}^2$ prime to c. The rest are exactly the same as the proof of above theorem.

We know that representative matrices of $\Gamma \setminus \Delta_{p(T)}^*$ can be selected as

$$\alpha_{p(T)} = \begin{pmatrix} p(T) & 0 \\ 0 & 1 \end{pmatrix}$$

$$\alpha_i = \begin{pmatrix} 1 & a_i \\ 0 & p(T) \end{pmatrix},$$

with deg $a_i < \deg p(T)$, $i = 2, 3, \ldots, \psi(P(T))$.

LEMMA 3.4. Let p(T) be a monic irreducible polynomial in A, and let z be imaginary quadratic. Then

$$f(z)=:\varphi_{\alpha_{p(T)}}(z)\prod_i\varphi_{\alpha_i}(z)=p(T)^{q^2-1}.$$

PROOF. The s-expansion for φ_{α_i} is given by

$$\varphi_{\alpha_i} = \frac{\sum_{k=1}^{\infty} a_k s(\frac{z+a_i}{p(T)})^k}{\sum_{k=1}^{\infty} a_k s(z)^k}$$

with $a_k \in A$ and $a_1 = -1$. The s-expansion for $\varphi_{\alpha_{p(T)}}$ is given by

$$\varphi_{\alpha_{p(T)}} = p(T)^{q^2 - 1} \frac{\sum_{k=1}^{\infty} a_k s(p(T)z)^k}{\sum_{k=1}^{\infty} a_k s(z)^k}.$$

We have the following $t(\frac{z}{p(T)})$ expansions.

$$\begin{split} t\left(\frac{z+a_i}{p(T)}\right) &= \sum_{k=0}^{\infty} (-1)^k \left(e_L\left(\frac{a_i\bar{\pi}}{p(T)}\right)^k t\left(\frac{z}{p(T)}\right)^{k+1}\right) \\ &= t\left(\frac{z}{p(T)}\right) + \text{higher terms.} \end{split}$$

$$t(p(T)z) = \frac{t(\frac{z}{p(T)})^{|p(T)^2|}}{f_{p(T)^2}(t(\frac{z}{p(T)}))} = t\left(\frac{z}{p(T)}\right)^{|p(T)^2|} + \text{higher terms.}$$

$$t(z) = \frac{t(\frac{z}{p(T)})^{|p(T)|}}{f_{p(T)}(t(\frac{z}{p(T)}))} = t\left(\frac{z}{p(T)}\right)^{|p(T)|} + \text{higher terms.}$$

Since $s = t^{q-1}$, the leading term of $\varphi_{\alpha i}$ is given by

$$\frac{(-1)t\left(\frac{z}{p(T)}\right)^{q-1}}{(-1)t\left(\frac{z}{p(T)}\right)^{|p(T)|(q-1)}}=t\left(\frac{z}{p(T)}\right)^{(q-1)(1-|p(T)|)}$$

The leading term of $\varphi_{\alpha_{p(T)}}$ is

$$p(T)^{q^2-1} \frac{(-1)t \left(\frac{z}{p(T)}\right)^{|p(T)^2|(q-1)}}{(-1)t \left(\frac{z}{p(T)}\right)^{|p(T)|(q-1)}} = p(T)^{q^2-1}t \left(\frac{z}{p(T)}\right)^{(q-1)(|p(T)^2|-|p(T)|)}$$

Hence the leading term of $\varphi_{\alpha_{p(T)}}(z) \prod_i \varphi_{\alpha_i}(z)$ is

$$\left(t \left(\frac{z}{p(T)} \right)^{(q-1)(1-|p(T)|)} \right)^{|p(T)|} p(T)^{q^2-1} t \left(\frac{z}{p(T)} \right)^{(q-1)(|p(T)^2|-|p(T)|)}$$

$$= p(T)^{q^2-1},$$

which is a constant. Following the proof of Theorem 2.4, $f(z)^{|p(T)|}$ lies in $A[\Lambda_{p(T)}][j]$ and it has a holomorphic t(z)-expansion. Thus it should be constant and this completes the proof.

THEOREM 3.5. Let p(T), \mathfrak{o} , $\mathfrak{a} = [z_1, z_2]$ and $p(T)\mathfrak{o} = \mathfrak{pp'}$ be as in Theorem 3.2. Let β_1 and β_2 be matrices of determinant p(T) such that $\beta_1 \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ and $\beta_2 \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ are bases of \mathfrak{pa} and $\mathfrak{p'a}$ respectively. If $\alpha \in M_2(A)$ has determinant p(T) and α does not lie in the orbit of β_1 or β_2 under $\Gamma = GL_2(A)$, then $\varphi_{\alpha} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ is a unit.

PROOF. It is easy to see that if any integral matrix has determinant p(T), then it is Γ -equivalent to a representive for left cosets of Γ in $\Delta_{p(T)}^*$. Since

$$\varphi_{\beta_1}\left(\frac{z_1}{z_2}\right)\varphi_{\beta_2}\left(\frac{z_1}{z_2}\right) \approx \mathfrak{p}^{tq^2-1}\mathfrak{p}^{q^2-1} = (p(T)^{q^2-1}),$$

all other terms in the product of lemma 3.4 cannot have prime factors. Thus $\varphi_{\alpha}\left(\frac{z_1}{z_2}\right)$ is a unit.

References

- S. Bae, On the action of Hecke operators on the Drinfeld cusp forms of small weights, Comm. Korean. Math. soc. 7 (1992), 69-80.
- On the modular equation for Drinfeld modules of rank 2, J. Number Th. 42 (1992), 123-133.
- 3. M. Deuring, Die Klassenkörper der Komplexen Millipikation, Enzyklopädie der Math. Wiss. Band I, 2. Teil, Heft 10, Teil II.
- E.-U. Gekeler, On the coefficients of Drinfeld modular forms, Invent. Math. 93 (1988), 667-700.
- 5. _____, Zur Arithmetik von Drinfeld-Module, Matl. Ann. 262 (1983), 167-182.
- Drinfeld Modular Curves, Lecture Notes in Math 1231. Springer-Verlag, Berlin Heidelberg New York, 1986.
- Hayes, D. R. Stickelberger Elements in Function Fields, Compositio Math. 55 (1985), 209-239.
- 8. S. Lang, Elliptic functions, Springer-Verlag New-York Berlin Heidelberg London Paris Tokyo.

Department of Mathematics KAIST Taejon 305-701, Korea