• 제목/요약/키워드: vacuum chuck

검색결과 27건 처리시간 0.027초

PDP panel 봉입 공정을 위한 Chuck System 개발에 관한 연구 (A Study On Chuck System development for PDP panel sealing process)

  • 이재황;김희식;최기상;이호찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.337-337
    • /
    • 2000
  • This paper describes a Chuck System developed for scaling PDP gas hole on PDP panel glass. There are lots of constraints for designing Chuck System: high temperature, high vacuum, precious motor control etc. A such constraints was considered by design of structure and by selecting of parts and material for Chuck System. The Chuck System was manufactured and assembled after the design process. It was applied on the PDP process unit. For sealing POP hole, precious control of a step motor was important in this system. For this experiment, a step motor, motor driver and micro controller(80196KC) were used.

  • PDF

웨이퍼 장착을 이용한 다이싱 척의 평탄도 평가 방법에 관한 연구 (A Study on the Flatness Evaluation Method of the Dicing Chuck using Chucked-wafer)

  • 육인수;이호철
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.53-58
    • /
    • 2008
  • This study was conducted to evaluate the flatness of the porous type of dicing chuck. Two measurement systems for a vacuum chuck with a porous type of ceramic plate were prepared using a digital indicator and a laser interferometer. 6 inch of silicon and glass wafer were also used. Vacuum pressure from 100mmHg to 700mmHg by 100mmHg was increased. From experiments, chucked-wafer flatness was converged to the dicing chuck flatness itself even though the repeatability of contact method using indicator was unstable. Finally, the chuck flatness was estimated below $2{\mu}m$ with peak-to valley value.

진공 척을 이용한 마이크로 LED 대량 전사 공정 개발 (Micro-LED Mass Transfer using a Vacuum Chuck)

  • 김인주;김용화;조영학;김성동
    • 마이크로전자및패키징학회지
    • /
    • 제29권2호
    • /
    • pp.121-127
    • /
    • 2022
  • 마이크로 LED는 크기가 100 ㎛ 이하인 LED 소자로 기존 LED에 비해 해상도, 밝기 등 여러 면에서 우수한 성능을 보일 뿐 아니라 유연 디스플레이, VR/AR 등 다양한 분야에 적용이 가능하다. 마이크로 LED 디스플레이를 제작하기 위해선 LED 웨이퍼로부터 최종기판으로 마이크로 LED를 옮기는 전사 공정이 필수적이며, 본 연구에서는 진공 척을 이용하여 마이크로 LED를 고속 대량 전사하는 방식을 제안하고 이를 검증하였다. MEMS 기술을 이용한 PDMS 마이크로 몰딩 공정을 통해 진공 척을 제작하였으며, PDMS 몰딩 공정을 제어하기 위해 댐 구조를 이용한 스핀 코팅 공정을 성공적으로 적용하였다. 솔더볼을 이용한 진공 척 구동 실험을 통해 진공 척을 이용한 마이크로 LED의 대량 전사 가능성을 확인하였다.

진공척 미세 가공기 개발 및 무산소동 절삭 특성 연구 (A Development of the Precision Machine with Vacuum Chuck and a Study on the Characteristics of Oxygen Free Couper)

  • 김건희;김윤중;국명호;이선규;홍권희
    • 한국기계가공학회지
    • /
    • 제6권2호
    • /
    • pp.28-33
    • /
    • 2007
  • This paper describes development of low cost precision machine that has a vacuum chuck. This study mainly aims to find out a cutting condition for maintaining optimum surface condition and to examine cutting characteristics of the precision machine that is equipped by diamond bites. The cutting materials is oxygen free copper. Several experiments were carried out to find out the main factors that affect the surface roughness such as principal axis RPM(rotation per minute), feeding speed, and cutting depth. As a result, we obtain The optimum cutting condition of the developed precision machine.

  • PDF

진공척 흡착패드 형태에 따른 대면적 임프린팅 균일 접촉 향상 연구 (Study on the Enhancement of the Uniform Contact Technology for Large Scale Imprinting with the Design of Vacuum Gripping Pad)

  • 장시열
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.326-331
    • /
    • 2008
  • The contact surfaces between mold and target should be in parallel for a proper imprinting process. However, large size of contacting area makes it difficult for both mating surfaces (mold and target planes) to be in all uniform contact with the expected precision level in terms of thickness and position. This is caused by the waviness of mold and target although it is very small relative to the area scale. The gripping force for both mold and target by the vacuum chuck is other major effect to interrupt the uniform contact, which must be avoided in imprinting mechanism. In this study, the cause of non-conformal contact mechanism between mold and target is investigated with the consideration of deformation due to the vacuum gripping for the size $470{\times}370\;mm^2$ LCD panel.

New Bending System Using a Segmented Vacuum Chuck for Stressed Mirror Polishing of Thin Mirrors

  • Kang, Pilseong;Yang, Ho-Soon
    • Current Optics and Photonics
    • /
    • 제1권6호
    • /
    • pp.618-625
    • /
    • 2017
  • In the present research, a new bending system using a segmented vacuum chuck for Stressed Mirror Polishing (SMP) is developed. SMP is a special fabrication method for thin aspheric mirrors, where simple flat or spherical fabrication is applied while a mirror blank is deflected. Since a mirror blank is usually glued to a bending fixture in the conventional SMP process, there are drawbacks such as long curing time, inconvenience of mirror replacement, risk of mirror breakage, and stress concentration near the glued area. To resolve the drawbacks, a new bending system is designed to effectively hold a mirror blank by vacuum. For the developed bending system, the optimal bending load to achieve the designated mirror deflection is found by finite element analysis and an optimization algorithm. With the measurement results of the deflected mirror surfaces with the optimal bending loads, the feasibility of the developed bending system is investigated. As a result, it is shown that the bending system is appropriate for the SMP process.

LCD 팬널의 임프린트 공정을 위한 접촉 평평도 증진 연구

  • 강윤석;장시열;임홍재;신동훈;정재일
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2006년도 춘계학술대회
    • /
    • pp.269-272
    • /
    • 2006
  • Surface contacts between mold and target should be in parallel for the imprinting mechanism. However, the size of contacting area makes it difficult for both mating surfaces to be in all contact because of precision level of the imprinting machine and the waviness of mold and target. The gripping force for both mold and target with the vacuum chuck is also major effect to interrupt the full contact, which must be avoided in imprinting mechanism. In this study, the preliminary study for the causes of non-uniformity of contacting surfaces such as mold and target is performed with $470{\times}370mm^2$ LCD panel size.

  • PDF

Adsorption Property of Silicone Rubber Sticking Chuck for OLED Glass Substrate

  • Kim, Jin-Hee;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • 제50권1호
    • /
    • pp.55-61
    • /
    • 2015
  • Manufacturing process of OLED contains adsorption-desorption process of glass substrate. There are several adsorption methods of glass substrate such as atmospheric pressure, vacuum and electrostatic adsorption. However, these methods are very complex to connect system. Therefore, the adsorption method using silicone rubber based sticking chuck was proposed in this study. Three types of silicone rubbers having 0, 19.3 and 32.2 wt% of fluorine were used and their mechanical properties, surface energies and adsorption properties were examined. According to the results ${\sigma}_{300}$ and hardness increased with increasing fluorine contents, but elongation was decreased. Also, fluorosilicone rubber containing 32.2 wt% of fluorine showed the lowest surface tension, among three types of rubber and resulted in the highest initial tack with glass substrate. After the adsorption-desorption test of 300,000 cycles was performed, the adsorption force of S-1 (silicone rubber) decreased largely from 2.34 to 0.73 MPa. However, the S-3 (fluorosilicone rubber having 32.2 wt%. of fluorine) decreased only from 3.15 to 2.24 MPa. From this study, we obtained the valuable equations related to long term durability of silicone based sticking chuck. Finally the transfer of silicone rubber to glass substrate with the adsorption-desorption process was not occurred and this phenomenon was examined by UV-Visible spectroscopy.

저진공 축전결합형 SF6, SF6/O2, SF6/CH4 플라즈마를 이용한 아크릴의 반응성 건식 식각 (Capacitively Coupled SF6, SF6/O2, SF6/CH4 Plasma Etching of Acrylic at Low Vacuum Pressure)

  • 박연현;주영우;김재권;노호섭;이제원
    • 한국재료학회지
    • /
    • 제19권2호
    • /
    • pp.68-72
    • /
    • 2009
  • This study investigated dry etching of acrylic in capacitively coupled $SF_6$, $SF_6/O_2$ and $SF_6/CH_4$ plasma under a low vacuum pressure. The process pressure was 100 mTorr and the total gas flow rate was fixed at 10 sccm. The process variables were the RIE chuck power and the plasma gas composition. The RIE chuck power varied in the range of $25{\sim}150\;W$. $SF_6/O_2$ plasma produced higher etch rates of acrylic than pure $SF_6$ and $O_2$ at a fixed total flow rate. 5 sccm $SF_6$/5 sccm $O_2$ provided $0.11{\mu}m$/min and $1.16{\mu}m$/min at 25W and 150W RIE of chuck power, respectively. The results were nearly 2.9 times higher compared to those at pure $SF_6$ plasma etching. Additionally, mixed plasma of $SF_6/CH_4$ reduced the etch rate of acrylic. 5 sccm $SF_6$/5 sccm $CH_4$ plasma resulted in $0.02{\mu}m$/min and $0.07{\mu}m$/min at 25W and 150W RIE of chuck power. The etch selectivity of acrylic to photoresist was higher in $SF_6/O_2$ plasma than in pure $SF_6$ or $SF_6/CH_4$ plasma. The maximum RMS roughness (7.6 nm) of an etched acrylic surface was found to be 50% $O_2$ in $SF_6/O_2$ plasma. Besides the process regime, the RMS roughness of acrylic was approximately $3{\sim}4\;nm$ at different percentages of $O_2$ with a chuck power of 100W RIE in $SF_6/O_2$ plasma etching.