DOI QR코드

DOI QR Code

Micro-LED Mass Transfer using a Vacuum Chuck

진공 척을 이용한 마이크로 LED 대량 전사 공정 개발

  • Kim, Injoo (Dept. of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology) ;
  • Kim, Yonghwa (Dept. of Mechanical System Design Eng. Seoul National University of Science and Technology) ;
  • Cho, Younghak (Dept. of Mechanical System Design Eng. Seoul National University of Science and Technology) ;
  • Kim, Sungdong (Dept. of Mechanical System Design Eng. Seoul National University of Science and Technology)
  • 김인주 (서울과학기술대학교 일반대학원 기계설계로봇공학과) ;
  • 김용화 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 조영학 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김성동 (서울과학기술대학교 기계시스템디자인공학과)
  • Received : 2022.06.20
  • Accepted : 2022.06.30
  • Published : 2022.06.30

Abstract

Micro-LED is a light-emitting diode smaller than 100 ㎛ in size. It attracts much attention due to its superior performance, such as resolution, brightness, etc., and is considered for various applications like flexible display and VR/AR. Micro-LED display requires a mass transfer process to move micro-LED chips from a LED wafer to a target substrate. In this study, we proposed a vacuum chuck method as a mass transfer technique. The vacuum chuck was fabricated with MEMS technology and PDMS micro-mold process. The spin-coating approach using a dam structure successfully controlled the PDMS mold's thickness. The vacuum test using solder balls instead of micro-LED confirmed the vacuum chuck method as a mass transfer technique.

마이크로 LED는 크기가 100 ㎛ 이하인 LED 소자로 기존 LED에 비해 해상도, 밝기 등 여러 면에서 우수한 성능을 보일 뿐 아니라 유연 디스플레이, VR/AR 등 다양한 분야에 적용이 가능하다. 마이크로 LED 디스플레이를 제작하기 위해선 LED 웨이퍼로부터 최종기판으로 마이크로 LED를 옮기는 전사 공정이 필수적이며, 본 연구에서는 진공 척을 이용하여 마이크로 LED를 고속 대량 전사하는 방식을 제안하고 이를 검증하였다. MEMS 기술을 이용한 PDMS 마이크로 몰딩 공정을 통해 진공 척을 제작하였으며, PDMS 몰딩 공정을 제어하기 위해 댐 구조를 이용한 스핀 코팅 공정을 성공적으로 적용하였다. 솔더볼을 이용한 진공 척 구동 실험을 통해 진공 척을 이용한 마이크로 LED의 대량 전사 가능성을 확인하였다.

Keywords

Acknowledgement

논문은 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012744, 2022년 산업혁신인재성장지원사업).

References

  1. Z. Wang, X. Shan, X. Cui, and P. Tian, "Characteristics and techniques of GaN-based micro-LEDs for application in next-generation display", Journal of Semiconductors, 41(4), 041606 (2020). https://doi.org/10.1088/1674-4926/41/4/041606
  2. G. Chen et al., "Performance of high-power III-nitride light emitting diodes", physica status solidi (a), 205(5), 1086 (2008). https://doi.org/10.1002/pssa.200778747
  3. N. H. Chang, I. S. Choi, and H. J. Shim, "DLS: dynamic backlight luminance scaling of liquid crystal display", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(8), 837 (2004). https://doi.org/10.1109/TVLSI.2004.831472
  4. M. Schadt, "Milestone in the History of Field-Effect Liquid Crystal Displays and Materials", Japanese Journal of Applied Physics, 48(3), 03B001 (2009). https://doi.org/10.1143/JJAP.48.03B001
  5. B. Geffroy, P. le Roy, and C. Prat, "Organic light-emitting diode (OLED) technology: materials, devices and display technologies", Polymer International, 55(6), 572 (2006). https://doi.org/10.1002/pi.1974
  6. H. W. Chen, J. H. Lee, B. Y. Lin, S. Chen, and S. T. Wu, "Liquid crystal display and organic light-emitting diode display: present status and future perspectives", Light: Science & Applications, 7(3), 17168 (2017). https://doi.org/10.1038/lsa.2017.168
  7. J. Day, J. Li, D. Y. C. Lie, C. Bradford, J. Y. Lin, and H. X. Jiang, "Full-scale self-emissive blue and green microdisplays based on GaN micro-LED arrays", Quantum Sensing and Nanophotonic Devices IX. SPIE (2012).
  8. E. Hsiang, Z. Yang, Q. Yang, Y. Lan, and S. Wu, "Prospects and challenges of mini-LED, OLED, and micro-LED displays", Journal of the Society for Information Display, 29(6), 446 (2021). https://doi.org/10.1002/jsid.1058
  9. Y. Wu, J. Ma, P. Su, L. Zhang, and B. Xia, "Full-Color Realization of Micro-LED Displays", Nanomaterials, 10(12), 2482 (2020). https://doi.org/10.3390/nano10122482
  10. E. H. Virey, N. Baron, and Z. Bouhamri, "30-4: MicroLED Display Technology Trends and Intellectual Property Landscape", SID Symposium Digest of Technical Papers, 51(1), 436 (2020). https://doi.org/10.1002/sdtp.13898
  11. Y. Huang, E. L. Hsiang, M. Y. Deng, and S. T. Wu, "Mini-LED, Micro-LED and OLED displays: present status and future perspectives", Light: Science & Applications, 9(1) (2020).
  12. T. Wu et al., "Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology", Applied Sciences, 8(9),1557 (2018). https://doi.org/10.3390/app8091557
  13. J. Li, B. Luo, and Z. Liu, "Micro-LED Mass Transfer Technologies", 2020 21st International Conference on Electronic Packaging Technology (ICEPT) (2020).
  14. X. Zhou, "Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display", Progress in Quantum Electronics, 71, 100263 (2020).
  15. A. R. Anwar, M. T. Sajjad, M. A. Johar, C. A. Hernandez- Gutierrez, M. Usman, and S. P. Lepkowski, "Recent Progress in Micro-LED-Based Display Technologies", Laser & Photonics Reviews, 2100427 (2022).
  16. K. Ding, V. Avrutin, N. Izyumskaya, U. Ozgur, and H. Morkoc, "Micro-LEDs, a Manufacturability Perspective", Applied Sciences, 9(6), 1206 (2019). https://doi.org/10.3390/app9061206
  17. Z. Chen, S. Yan, and C. Danesh, "MicroLED technologies and applications: characteristics, fabrication, progress, and challenges", Journal of Physics D: Applied Physics, 54(12), 123001 (2021). https://doi.org/10.1088/1361-6463/abcfe4
  18. P. Delaporte and A. P. Alloncle, "Laser-induced forward transfer: A high resolution additive manufacturing technology", Optics & Laser Technology, 78, 33 (2016). https://doi.org/10.1016/j.optlastec.2015.09.022
  19. D. Gomez, "Scalability and Yield in Elastomer Stamp Micro-Transfer-Printing", 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) (2017).
  20. J. Li, G. Yan, B. Luo, and Z. Liu, "Study of Transfer-Printing Technologies for Micro-LED Displays", SID Symposium Digest of Technical Papers, 51(S1), 125 (2020). https://doi.org/10.1002/sdtp.13769
  21. H. J. J. Yeh and J. S. Smith, "Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates", IEEE Photonics Technology Letters, 6(6), 706 (1994). https://doi.org/10.1109/68.300169
  22. E. Saeedi, S. S. Kim, and B. A. Parviz, "Self-assembled inorganic micro-display on plastic", 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS) (2007).
  23. S. Cho, D. Lee, and S. Kwon, "Fluidic Self-Assembly Transfer Technology for Micro-Led Display", 20th International Conference on Solid-State Sensors, Actuators and Microsystems (2019).
  24. J. C. McDonald, "Fabrication of microfluidic systems in poly(dimethylsiloxane)", Electrophoresis, 21(1), 27 (2000). https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
  25. U. G. Lee, W. B. Kim, D. H. Han, and H. S. Chung, "A Modified Equation for Thickness of the Film Fabricated by Spin Coating", Symmetry, 11(9), 1183 (2019). https://doi.org/10.3390/sym11091183