DOI QR코드

DOI QR Code

Capacitively Coupled SF6, SF6/O2, SF6/CH4 Plasma Etching of Acrylic at Low Vacuum Pressure

저진공 축전결합형 SF6, SF6/O2, SF6/CH4 플라즈마를 이용한 아크릴의 반응성 건식 식각

  • Published : 2009.02.27

Abstract

This study investigated dry etching of acrylic in capacitively coupled $SF_6$, $SF_6/O_2$ and $SF_6/CH_4$ plasma under a low vacuum pressure. The process pressure was 100 mTorr and the total gas flow rate was fixed at 10 sccm. The process variables were the RIE chuck power and the plasma gas composition. The RIE chuck power varied in the range of $25{\sim}150\;W$. $SF_6/O_2$ plasma produced higher etch rates of acrylic than pure $SF_6$ and $O_2$ at a fixed total flow rate. 5 sccm $SF_6$/5 sccm $O_2$ provided $0.11{\mu}m$/min and $1.16{\mu}m$/min at 25W and 150W RIE of chuck power, respectively. The results were nearly 2.9 times higher compared to those at pure $SF_6$ plasma etching. Additionally, mixed plasma of $SF_6/CH_4$ reduced the etch rate of acrylic. 5 sccm $SF_6$/5 sccm $CH_4$ plasma resulted in $0.02{\mu}m$/min and $0.07{\mu}m$/min at 25W and 150W RIE of chuck power. The etch selectivity of acrylic to photoresist was higher in $SF_6/O_2$ plasma than in pure $SF_6$ or $SF_6/CH_4$ plasma. The maximum RMS roughness (7.6 nm) of an etched acrylic surface was found to be 50% $O_2$ in $SF_6/O_2$ plasma. Besides the process regime, the RMS roughness of acrylic was approximately $3{\sim}4\;nm$ at different percentages of $O_2$ with a chuck power of 100W RIE in $SF_6/O_2$ plasma etching.

Keywords

References

  1. T. James, M. Mannoor and D. Ivanov, Sensors, 8, 6077 (2008) https://doi.org/10.3390/s8096077
  2. H. Fujikakea, H. Satoa and T. Murashige, Displays, 25, 3 (2004) https://doi.org/10.1016/j.displa.2004.04.001
  3. E. Huitema, G. Gelinck, B. Putten, E. Cantatore, E. Veenendaal, L. Schrijnemakers, B. Huisman and D. Leeuw, Organic & Nanoscale Tech., 21 (2003)
  4. G. Ryu, M. Lee and C. Song, IMID/IDMC '06 DIGEST, 1178 (2006)
  5. H. Becker and C. Gartner. Elctrophoresis, 21, 12 (2000) https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7
  6. P. B. Chinoy, Manufacturing Tech., 20, 199 (1997)
  7. J. J. Ritter and J. Kruger, J. De Physique, 12, C10-225 (1983)
  8. C. H. Steinbruchel, B. J. Curtis, H. W. Lehmann and R. Widmer, Tran. Plasma Sci., PS-14, 137 (1986) https://doi.org/10.1109/TPS.1986.4316516
  9. B. Neppert, B. Heise and H.-G. Kilian, Colloid & Polymer Sci., 261(7), 577 (1983) https://doi.org/10.1007/BF01526623
  10. M. Sugawara, Plasma Etching, p.180, Oxford University Press, NewYork, USA, (1998)
  11. M. A. Libermann and A. J. Lichtenberg, Principles of Plasma Discharges & Materials Processing, p.604, John Wiley & Sons, New Jersey, USA, (2005)
  12. S. H. Kim, S. J. Woo, J. H. Ahn, J. Appl. Phys., 39, 7011 (2000) https://doi.org/10.1143/JJAP.39.7011
  13. R. Knizikevi ius, Sens. Actuators, A132, 726 (2006) https://doi.org/10.1016/j.sna.2006.02.047