• 제목/요약/키워드: uniformly k-starlike

검색결과 19건 처리시간 0.021초

INCLUSION PROPERTIES OF A CLASS OF FUNCTIONS INVOLVING THE DZIOK-SRIVASTAVA OPERATOR

  • Devi, Satwanti;Srivastava, H.M.;Swaminathan, A.
    • Korean Journal of Mathematics
    • /
    • 제24권2호
    • /
    • pp.139-168
    • /
    • 2016
  • In this work, we rst introduce a class of analytic functions involving the Dziok-Srivastava linear operator that generalizes the class of uniformly starlike functions with respect to symmetric points. We then establish the closure of certain well-known integral transforms under this analytic function class. This behaviour leads to various radius results for these integral transforms. Some of the interesting consequences of these results are outlined. Further, the lower bounds for the ratio between the functions f(z) in the class under discussion, their partial sums $f_m(z)$ and the corresponding derivative functions f'(z) and $f^{\prime}_m(z)$ are determined by using the coecient estimates.

ANALYTIC FUNCTIONS WITH CONIC DOMAINS ASSOCIATED WITH CERTAIN GENERALIZED q-INTEGRAL OPERATOR

  • Om P. Ahuja;Asena Cetinkaya;Naveen Kumar Jain
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1111-1126
    • /
    • 2023
  • In this paper, we define a new subclass of k-uniformly starlike functions of order γ (0 ≤ γ < 1) by using certain generalized q-integral operator. We explore geometric interpretation of the functions in this class by connecting it with conic domains. We also investigate q-sufficient coefficient condition, q-Fekete-Szegö inequalities, q-Bieberbach-De Branges type coefficient estimates and radius problem for functions in this class. We conclude this paper by introducing an analogous subclass of k-uniformly convex functions of order γ by using the generalized q-integral operator. We omit the results for this new class because they can be directly translated from the corresponding results of our main class.

SUFFICIENT CONDITIONS AND RADII PROBLEMS FOR A STARLIKE CLASS INVOLVING A DIFFERENTIAL INEQUALITY

  • Swaminathan, Anbhu;Wani, Lateef Ahmad
    • 대한수학회보
    • /
    • 제57권6호
    • /
    • pp.1409-1426
    • /
    • 2020
  • Let 𝒜n be the class of analytic functions f(z) of the form f(z) = z + ∑k=n+1 αkzk, n ∈ ℕ defined on the open unit disk 𝔻, and let $${\Omega}_n:=\{f{\in}{\mathcal{A}}_n:\|zf^{\prime}(z)-f(z)\|<{\frac{1}{2}},\;z{\in}{\mathbb{D}}\}$$. In this paper, we make use of differential subordination technique to obtain sufficient conditions for the class Ωn. Writing Ω := Ω1, we obtain inclusion properties of Ω with respect to functions which map 𝔻 onto certain parabolic regions and as a consequence, establish a relation connecting the parabolic starlike class 𝒮P and the uniformly starlike UST. Various radius problems for the class Ω are considered and the sharpness of the radii estimates is obtained analytically besides graphical illustrations.

Radii of Starlikeness and Convexity for Analytic Functions with Fixed Second Coefficient Satisfying Certain Coefficient Inequalities

  • MENDIRATTA, RAJNI;NAGPAL, SUMIT;RAVICHANDRAN, V.
    • Kyungpook Mathematical Journal
    • /
    • 제55권2호
    • /
    • pp.395-410
    • /
    • 2015
  • For functions $f(z)=z+a_2z^2+a_3z^3+{\cdots}$ with ${\mid}a_2{\mid}=2b$, $b{\geq}0$, sharp radii of starlikeness of order ${\alpha}(0{\leq}{\alpha}<1)$, convexity of order ${\alpha}(0{\leq}{\alpha}<1)$, parabolic starlikeness and uniform convexity are derived when ${\mid}a_n{\mid}{\leq}M/n^2$ or ${\mid}a_n{\mid}{\leq}Mn^2$ (M>0). Radii constants in other instances are also obtained.

HYPERGEOMETRIC DISTRIBUTION SERIES AND ITS APPLICATION OF CERTAIN CLASS OF ANALYTIC FUNCTIONS BASED ON SPECIAL FUNCTIONS

  • Murugusundaramoorthy, Gangadharan;Porwal, Saurabh
    • 대한수학회논문집
    • /
    • 제36권4호
    • /
    • pp.671-684
    • /
    • 2021
  • The tenacity of the current paper is to find connections between various subclasses of analytic univalent functions by applying certain convolution operator involving generalized hypergeometric distribution series. To be more specific, we examine such connections with the classes of analytic univalent functions k - 𝓤𝓒𝓥* (𝛽), k - 𝓢*p (𝛽), 𝓡 (𝛽), 𝓡𝜏 (A, B), k - 𝓟𝓤𝓒𝓥* (𝛽) and k - 𝓟𝓢*p (𝛽) in the open unit disc 𝕌.

Confluent Hypergeometric Distribution and Its Applications on Certain Classes of Univalent Functions of Conic Regions

  • Porwal, Saurabh
    • Kyungpook Mathematical Journal
    • /
    • 제58권3호
    • /
    • pp.495-505
    • /
    • 2018
  • The purpose of the present paper is to investigate Confluent hypergeometric distribution. We obtain some basic properties of this distribution. It is worthy to note that the Poisson distribution is a particular case of this distribution. Finally, we give a nice application of this distribution on certain classes of univalent functions of the conic regions.

Pascal Distribution Series Connected with Certain Subclasses of Univalent Functions

  • El-Deeb, Sheeza M.;Bulboaca, Teodor;Dziok, Jacek
    • Kyungpook Mathematical Journal
    • /
    • 제59권2호
    • /
    • pp.301-314
    • /
    • 2019
  • The aim of this article is to make a connection between the Pascal distribution series and some subclasses of normalized analytic functions whose coefficients are probabilities of the Pascal distribution. For these functions, for linear combinations of these functions and their derivatives, for operators defined by convolution products, and for the Alexander-type integral operator, we find simple sufficient conditions such that these mapping belong to a general class of functions defined and studied by Goodman, Rønning, and Bharati et al.

AN INVESTIGATION ON GEOMETRIC PROPERTIES OF ANALYTIC FUNCTIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS EXPRESSED BY HYPERGEOMETRIC FUNCTIONS

  • Akyar, Alaattin;Mert, Oya;Yildiz, Ismet
    • 호남수학학술지
    • /
    • 제44권1호
    • /
    • pp.135-145
    • /
    • 2022
  • This paper aims to investigate characterizations on parameters k1, k2, k3, k4, k5, l1, l2, l3, and l4 to find relation between the class of 𝓗(k, l, m, n, o) hypergeometric functions defined by $$5_F_4\[{\array{k_1,\;k_2,\;k_3,\;k_4,\;k_5\\l_1,\;l_2,\;l_3,\;l_4}}\;:\;z\]=\sum\limits_{n=2}^{\infty}\frac{(k_1)_n(k_2)_n(k_3)_n(k_4)_n(k_5)_n}{(l_1)_n(l_2)_n(l_3)_n(l_4)_n(1)_n}z^n$$. We need to find k, l, m and n that lead to the necessary and sufficient condition for the function zF([W]), G = z(2 - F([W])) and $H_1[W]=z^2{\frac{d}{dz}}(ln(z)-h(z))$ to be in 𝓢*(2-r), r is a positive integer in the open unit disc 𝒟 = {z : |z| < 1, z ∈ ℂ} with $$h(z)=\sum\limits_{n=0}^{\infty}\frac{(k)_n(l)_n(m)_n(n)_n(1+\frac{k}{2})_n}{(\frac{k}{2})_n(1+k-l)_n(1+k-m)_n(1+k-n)_nn(1)_n}z^n$$ and $$[W]=\[{\array{k,\;1+{\frac{k}{2}},\;l,\;m,\;n\\{\frac{k}{2}},\;1+k-l,\;1+k-m,\;1+k-n}}\;:\;z\]$$.