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SUFFICIENT CONDITIONS AND RADII PROBLEMS FOR
A STARLIKE CLASS INVOLVING A DIFFERENTIAL

INEQUALITY

Anbhu Swaminathan and Lateef Ahmad Wani

Abstract. Let An be the class of analytic functions f(z) of the form
f(z) = z +

∑∞
k=n+1 akzk, n ∈ N defined on the open unit disk D, and let

Ωn :=
{

f ∈ An :
∣∣zf ′(z)− f(z)

∣∣ <
1
2

, z ∈ D
}

.

In this paper, we make use of differential subordination technique to ob-
tain sufficient conditions for the class Ωn. Writing Ω := Ω1, we obtain
inclusion properties of Ω with respect to functions which map D onto
certain parabolic regions and as a consequence, establish a relation con-
necting the parabolic starlike class SP and the uniformly starlike UST .
Various radius problems for the class Ω are considered and the sharpness
of the radii estimates is obtained analytically besides graphical illustra-
tions.

1. Introduction

Let C be the set of complex numbers and let H := H(D) be the totality of
functions f(z) that are analytic in the open unit disc D := {z ∈ C : |z| < 1}.
For a ∈ C and n ∈ N := {1, 2, 3, . . .}, we define the function classes Hn(a) and
An as follows:

Hn(a) :=
{
f ∈ H : f(z) = a+

∞∑
k=n

akz
k, ak ∈ C

}
and

An :=
{
f ∈ H : f(z) = z +

∞∑
k=n+1

akz
k, ak ∈ C

}
.

In particular, we write A := A1. For 0 ≤ α < 1, let S∗(α) and C(α) be the
subclasses of A which consist of functions that are, respectively, starlike and
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convex of order α. Analytically,

S∗(α) :=
{
f : Re

(
zf ′(z)
f(z)

)
> α

}
and C(α) :=

{
f : Re

(
1 + zf ′′(z)

f ′(z)

)
> α

}
.

Further, S∗ := S∗(0) and C := C(0) are the well-known classes of starlike
and convex functions in D. We note that f ∈ C if and only if zf ′ ∈ S∗ and
C ( S∗ ( S, where S is the collection of all functions f ∈ A that are univalent
in D. For further details related to these classes, we refer to the monograph of
Duren [5]. For f, g ∈ H, we say that f(z) is subordinate to g(z), written f ≺ g, if
there exists an analytic function w(z) in D satisfying w(0) = 0 and |w(z)| < 1
such that f(z) = g(w(z)). If f ≺ g, then f(0) = g(0) and f(D) ⊂ g(D).
Further, if the function g(z) happens to be univalent, then f ≺ g if and only if

f(0) = g(0) and f(D) ⊂ g(D).

Let Ψ : C2 × D→ C be a complex-valued analytic function and let h : D→ C
be univalent. If p ∈ H satisfies the first-order differential subordination

Ψ (p(z), zp′(z); z) ≺ h(z), z ∈ D,(1)
then p(z) is called a solution of the differential subordination (1). If q : D→ C is
univalent and p≺q for all p(z) satisfying (1), then q(z) is said to be a dominant
of (1). A dominant q̃(z) that satisfies q̃ ≺ q for all dominants q(z) of (1) is called
the best dominant of (1). We note that the best dominant is unique up to a
rotation of D. For more insight into various forms of differential subordinations,
we refer to the monograph of Miller and Mocanu [14] (see also Bulboacǎ [3]).
For two functions f(z) = z +

∑∞
k=2 akz

k ∈ A and g(z) = z +
∑∞
k=2 bkz

k ∈ A,
the Hadamard product (or convolution) of f and g, denoted by f ∗ g, is defined
as the analytic function

h(z) = (f ∗ g)(z) = z +
∞∑
k=2

akbkz
k, z ∈ D.

Under the operation of Hadamard product, the function `(z) = z/(1 − z) =
z +

∑∞
k=2 z

k mapping D onto the half-plane Re(w) > −1/2 plays the role of
identity element. That is, for any function f ∈ A,

(f ∗ `)(z) = f(z) = (` ∗ f)(z).
Recently, Peng and Zhong [17] introduced a function class Ω involving a

differential inequality and given by

Ω :=
{
f ∈ A : |zf ′(z)− f(z)| < 1

2 , z ∈ D
}
.(2)

The authors in [17] have shown that Ω is a subclass of the class of starlike
functions S∗, and hence established that the members of Ω are univalent in
D. Besides discussing several geometric properties of the members of Ω, Peng
and Zhong [17] proved that the radius of convexity for Ω is 1/2, and that Ω
is closed under the operation of Hadamard product, i.e., if f1, f2 ∈ Ω, then
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f1 ∗ f2 ∈ Ω. Later, Obradović and Peng [15] considered the class Ω and used
basic techniques to obtain two sufficient conditions for functions f ∈ A to
be in the class Ω. Very recently, Peng and Obradović [16] discussed a few
estimates on the logarithmic coefficients and the inverse function coefficients
for the functions in Ω. Apart from many other important results, Peng and
Obradović [16] proved that if f ∈ Ω, then the Libera operator

L (f(z)) = 2
z

∫ z

0
f(ζ)dζ

is also in Ω.
In this paper, we consider the class

Ωn :=
{
f ∈ An : |zf ′(z)− f(z)| < 1

2 , z ∈ D
}
,

which is, in some sense, a natural generalization of Ω := Ω1, and discuss several
interesting and characteristic properties of the members of Ωn. More explicitly,
in Section 2, we use the techniques of differential subordination to establish
sufficient conditions for f ∈ An to be in the class Ωn. The sufficient conditions
derived by Obradović and Peng [15] are obtained as special cases. Moreover,
we use these results to construct functions of the form

f(z) =
∫ 1

0

∫ 1

0
J (s, t, z)dsdt, z ∈ D,(3)

and obtain conditions on the analytic kernel-function J (z) so that the function
f(z) given by (3) is a member of Ωn. In Section 3, inclusion relations between
the parabolic starlike class SP , the uniformly starlike class UST and the class
Ω given by (2) are studied, and as a consequence a remarkable result connect-
ing SP and UST is derived. Section 4 discusses several radius problems for Ω
and, in particular, the parabolic radius for Ω is found to be 2/3. Furthermore,
certain geometrically defined subclasses (e.g., S∗e , S∗C , S∗$ etc.) of S∗ are also
considered in Section 4 and the corresponding radii problems for Ω are settled.
Most importantly, the sharpness of radius estimates proved analytically is il-
lustrated graphically as well. In the end, we pose a problem on the Hadamard
product of members of Ω.

2. Sufficient conditions for Ωn

To prove our results, we use the following lemma related to first-order dif-
ferential subordination.

Lemma 2.1 ([14, Theorem 3.1b, p. 71]). Let h(z) be a convex function in D
with h(0) = a, γ 6= 0 and Reγ ≥ 0. If p(z) ∈ Hn(a) and

p(z) + zp′(z)
γ
≺ h(z),
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then

p(z) ≺ q(z) ≺ h(z),

where

q(z) = γ

nzγ/n

∫ z

0
h(ξ) ξγ/n−1dξ.

The function q(z) is convex and is the best dominant.

Theorem 2.2. Let n ∈ N and γ ≥ 1. If f ∈ An satisfies the inequality∣∣∣∣zf ′′(z) + (γ − 1)
(
f ′(z)− f(z)

z

)∣∣∣∣ < n+ γ

2 ,(4)

then f ∈ Ωn. The result is sharp for the function Ln,µ(z) given by

Ln,µ(z) := z + µ

2nz
n+1, |µ| = 1.(5)

Proof. In terms of subordination, the inequality (4) can be rewritten as

zf ′′(z) + (γ − 1)
(
f ′(z)− f(z)

z

)
≺
(
n+ γ

2

)
z, z ∈ D.(6)

Setting

p(z) = f ′(z)− f(z)
z

=
∞∑
k=n

(kak+1)zk ∈ Hn(0),

the subordination (6) takes the form

γp(z) + zp′(z) ≺
(
n+ γ

2

)
z =: h(z).

It can be easily seen that h(z) is convex in D and h(0) = 0 = p(0). Therefore,
Lemma 2.1 is applicable and hence, we have

p(z) ≺ 1
nzγ/n

∫ z

0

((
n+ γ

2

)
ξ

)
ξγ/n−1dξ = z

2 .

This further implies that ∣∣∣∣f ′(z)− f(z)
z

∣∣∣∣ < 1
2 .(7)

Now, making use of (7) and the fact that f(0) = 0, we obtain

|zf ′(z)− f(z)| = |z|
∣∣∣∣f ′(z)− f(z)

z

∣∣∣∣ < 1
2 .

This proves that f ∈ Ωn. For the function Ln,µ(z) defined in (5),∣∣∣∣zL′′n,µ(z) + (γ − 1)
(
L′n,µ(z)− Ln,µ(z)

z

)∣∣∣∣ =
∣∣∣∣(n+ γ

2

)
µzn

∣∣∣∣ < n+ γ

2 ,
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proving that Ln,µ(z) satisfies the condition (4), and hence is a member of Ωn.
Further, for z ∈ D, the function Ln,µ(z) satisfies∣∣zL′n,µ(z)− Ln,µ(z)

∣∣ =
∣∣∣∣zn+1

2

∣∣∣∣ < 1
2 .

This shows that the result is sharp for the function Ln,µ ∈ Ωn given by (5) and
completes the proof. �

Fixing n = 1, and then taking γ = 1 and γ = 2 in Theorem 2.2, respectively,
we obtain the following sufficient conditions established by Obradović and Peng
[15].
Corollary 2.3. If f ∈ A satisfies |zf ′′(z)| < 1, then f ∈ Ω. The number 1 is
best possible.
Corollary 2.4. Let f ∈ A. If∣∣z2f ′′(z) + zf ′(z)− f(z)

∣∣ < 3
2 ,

then f ∈ Ω. The number 3/2 is best possible.
The following theorem also provides sufficient conditions for Ωn and is a

direct application of Theorem 2.2.
Theorem 2.5. Let γ ≥ 1, n ∈ N, and let

f(z) = z +
∞∑

k=n+1
akz

k ∈ An, z ∈ D.

If
∞∑

k=n+1
(k − 1) (k + γ − 1) |ak| ≤

n+ γ

2 ,(8)

then f ∈ Ωn. Equality holds for the function Ln,µ ∈ Ωn given by (5).
Proof. Suppose that (8) holds, then for z ∈ D,∣∣∣∣zf ′′(z) + (γ − 1)

(
f ′(z)− f(z)

z

)∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1
(k − 1) (k + γ − 1) akzk−1

∣∣∣∣∣
<

∞∑
k=n+1

(k − 1) (k + γ − 1) |ak|

≤ n+ γ

2 ,

and the desired result follows from Theorem 2.2. It is easy to verify that the
function Ln,µ(z) given by (5) satisfies

∞∑
k=n+1

(k − 1)[k + γ − 1]|ak| =
n+ γ

2 .
�
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As afore, Theorem 2.5 yields:

Corollary 2.6. Let f(z) = z +
∑∞
k=2 akz

k ∈ A. If
∑∞
k=2 k(k − 1)|ak| ≤ 1,

then f ∈ Ω. The result is sharp.

Corollary 2.7. Let the function f(z) = z +
∑∞
k=2 akz

k ∈ A satisfies the
inequality

∞∑
k=2

(k2 − 1)|ak| ≤
3
2 .

Then f ∈ Ω and the result is sharp.

Remark 2.8. In both the results, Corollary 2.6 and Corollary 2.7, the equality
holds for the function Lµ(z) := L1,µ(z) ∈ Ω given by

Lµ(z) := z + µ

2 z
2, |µ| = 1.(9)

Figure 1 shows the region Lµ(D) for different values of µ.

(a) µ = 1 (b) µ = (−1 + i)/
√

2

Figure 1. The region Lµ(D).

We now use Theorem 2.2 to construct functions involving double integrals
that are members of the function class Ωn.

Theorem 2.9. Let γ ≥ 1, n ∈ N, and let J (z) be analytic in D such that

|J (z)| ≤ n+ γ

2 .(10)

Then the function

f(z) = z + zn+1
∫ 1

0

∫ 1

0
J (stz)sn−1tn+γ−1dsdt(11)



SUFFICIENT CONDITIONS AND RADII PROBLEMS FOR A STARLIKE CLASS 1415

belongs to the class Ωn. Moreover, if the equality holds in (10), then (11) is
the function Ln,µ ∈ Ωn given by (5).

Proof. Let us consider the function f ∈ An satisfying the second-order differ-
ential equation

zf ′′(z) + (γ − 1)
(
f ′(z)− f(z)

z

)
= znJ (z).(12)

From (10) and (12), we have∣∣∣∣zf ′′(z) + (γ − 1)
(
f ′(z)− f(z)

z

)∣∣∣∣ < n+ γ

2 .

In view of Theorem 2.2, we conclude that the solution of the differential equa-
tion (12) must lie Ωn. We show that the solution of (12) is the function defined
in (11). Writing

q(z) = f ′(z)− f(z)
z

,

the equation (12) reduces to the form

z1−γ(zγq(z))′ = znJ (z).

On solving the above equation, we obtain

q(z) = zn
∫ 1

0
J (tz)tn+γ−1dt,

or equivalently,

f ′(z)− f(z)
z

= zn
∫ 1

0
J (tz)tn+γ−1dt.(13)

The differential equation (13) can be rewritten as

z

(
f(z)
z
− 1
)′

= zn
∫ 1

0
J (tz)tn+γ−1dt,

and whose solution can be easily verified to be the function given by (11). Now
if the equality holds in (10), then J (z) = µ(n+ γ)/2 for some µ ∈ C satisfying
|µ| = 1. Substituting this value of J (z) in (11) and doing some basic analysis,
we obtain the function Ln,µ(z) which is a member of Ωn. This completes the
proof. �

Corollary 2.10. Let J ∈ H such that |J (z)| ≤ 1. Then the function

f(z) = z + z2
∫ 1

0

∫ 1

0
J (stz)tdsdt

is a member of Ω defined in (2).
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From the problems discussed so far, it was observed that the function Ln,µ(z)
given by (5) played the role of an extremal function in Ωn. We now claim that
the function Ln,µ(z) is indeed an extreme point of Ωn for each n ∈ N and for
each µ ∈ C satisfying |µ| = 1. To establish this fact, we will use the following
generalized version of Theorem 3.14 of Peng and Zhong [17].

Lemma 2.11. Let φ(z) be analytic in D and satisfies |φ(z)| ≤ 1 for each z ∈ D.
Then the function f ∈ An is an extreme point of Ωn if and only if

f(z) = z + zn

2n

∫ z

0
φ(ξ) dξ,

and ∫ 2π

0
log
[
1− |φ(eiθ)|

]
dθ = −∞.

Since Ln,µ(z) given by (5) can be written as

Ln,µ(z) = z + µ

2nz
n+1 = z + zn

2n

∫ z

0
φ(ξ) dξ,

where φ(z) = µz satisfies |φ(z)| < 1 and∫ 2π

0
log
[
1− |φ(eiθ)|

]
dθ =

∫ 2π

0
log[0]dθ = −∞,

the desired claim follows from Lemma 2.11.

3. Inclusion properties of Ω

The following necessary condition for a function f ∈ Ω was established by
Peng and Zhong [17].

Lemma 3.1 ([17, Corollary 3.12]). If f(z) = z +
∑∞
k=2 akz

k is in Ω, then

|ak| ≤
1

2(k − 1) , k ≥ 2.(14)

We now show that (14) is also sufficient for some special kind of functions.

Theorem 3.2. The function fk(z) = z + akz
k, k ≥ 2 is in Ω if and only if

(14) holds.

Proof. The necessary part easily follows from Lemma 3.1. Now suppose (14)
holds, then

|zf ′k(z)− fk(z)| =
∣∣(k − 1)akzk

∣∣ < (k − 1)|ak| ≤
1
2 .

Hence, fk ∈ Ω. �
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In view of the condition (14), it is easy to verify that the Koebe function
k(z) = z/(1 − z)2 = z +

∑∞
k=2 kz

k ∈ S∗ is not a member of Ω, and hence the
inclusion Ω ⊂ S∗ is proper. We now try to seek the relationship of Ω with
other proper subclasses of S∗, e.g., SP and UST . To establish our results, the
theory of coefficient bounds in the respective function classes is utilized.

Definition (Parabolic Starlike Functions - SP ). A function f ∈ A is said to
be in the class SP ⊂ S∗ if and only if

Re
(
zf ′(z)
f(z)

)
>

∣∣∣∣zf ′(z)f(z) − 1
∣∣∣∣ , z ∈ D.

These functions were introduced by Rønning [19] and later studied and gen-
eralized by many authors (see [2, 9, 10]). Geometrically, f ∈ SP if and only if
all the values taken by the expression zf ′(z)/f(z) lie in the parabolic region

RP :=
{
w = u+ iv ∈ C : v2 < 2u− 1

}
.(15)

Lemma 3.3 ([19, Theorem 3]). The function fk(z) = z+ akz
k is in SP if and

only if

|ak| ≤
1

(2k − 1) , k ≥ 2.

In view of Lemma 3.3, the function Lµ(z) = z + µz2/2 ∈ Ω clearly shows
that Ω 6⊂ SP . For the other direction, we give the following result.

Theorem 3.4. If fk(z) = z+akz
k belongs to SP , then fk ∈ Ω for every k ≥ 2.

Proof. Let fk(z) = z + akz
k ∈ SP . Then from Lemma 3.3

|ak| ≤
1

(2k − 1) , k ≥ 2.

Since,
1

(2k − 1) = 1
2(k − 1) + 1 <

1
2(k − 1) , ∀ k ≥ 2,

the desired result follows from Theorem 3.2. �

Definition (Uniformly Starlike Functions - UST ). A function f ∈ A is said
to be in the class UST ⊂ S∗ if and only if

Re
(
f(z)− f(ξ)
(z − ξ)f ′(z)

)
> 0(16)

for every pair (ξ, z) ∈ D× D.

This class UST was introduced by Goodman [8]. These functions have the
property that for every circular arc γ contained in D with center ζ also in D,
the arc f(γ) is starlike with respect to f(ζ).
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Lemma 3.5 ([13, Theorem 5]). If

|ak| ≤
√
k + 1
2k3 , k ≥ 2,

then the function fk(z) = z + akz
k is in UST .

Using Lemma 3.5, we prove the following theorem.

Theorem 3.6. Let fk(z) = z + akz
k be in Ω. Then, for all k ≥ 3, fk(z) is in

UST .

Proof. Given fk(z) = z + akz
k ∈ Ω, we have from Theorem 3.2 that

|ak| ≤
1

2(k − 1) , k ≥ 2.

Since,

1
2(k − 1) ≤

√
k + 1
2k3 for all k ≥ 3,

it follows from Lemma 3.5 that fk(z) = z + akz
k is in UST for all k ≥ 3. �

A Remarkable Result. We know that SP 6⊂ UST and UST 6⊂ SP , see Ali and
Ravichandran [1, p. 21] and Rønning [18, p. 125]. In view of Theorem 3.4 and
Theorem 3.6, we remark the following important result which is not available
in the literature. This remark gives an inclusion type relation between the
members of SP and UST .

Remark 3.7. If fk(z) = z + akz
k is in SP , then fk ∈ UST for all k ≥ 3.

4. Radii problems for Ω

Let F and G be two function families in A. Then the F-radius for G is
the largest number ρ ∈ (0, 1) such that r−1f(rz) ∈ F for all f ∈ G, where
0 < r ≤ ρ. Moreover, the number ρ is said to be sharp if there exists a function
f0 ∈ G such that r−1f0(rz) 6∈ F whenever r > ρ and such a function f0 is
called extremal function. The problem of finding the number “ρ” is called a
radius problem in geometric function theory. In the sequel, by

RF (G) = ρ,

we mean that ρ is the F-radius for G. For instance, see Duren [5],

RS∗ (S) = tanh (π/4) and RC (S) = RC (S∗) = 2−
√

3.
For a comprehensive list of classical radii results in univalent function theory,
we refer to Goodman [7, Chapter 13].

For the function class Ω defined in (2), Peng and Zhong [17, Theorem 3.4]
proved that RC (Ω) = 1/2 and the estimate is sharp. In this section, we will
solve some more radii problems for Ω. Before proceeding, we require a result
to be proved with the help of the following lemma.
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Lemma 4.1 ([17, Theorem 3.1]). If f ∈ Ω, then

|z| − 1
2 |z|

2 ≤|f(z)| ≤ |z|+ 1
2 |z|

2,(17)

and

1− |z| ≤ |f ′(z)| ≤ 1 + |z|.

Further, for each 0 6= z ∈ D, the equality occurs in both the estimates if and
only if

f(z) = Lµ(z) = z + µ

2 z
2 with |µ| = 1.

We now prove the instrumental lemma.

Lemma 4.2. Let f ∈ Ω. Then for |z| = r < 1, we have the sharp estimate∣∣∣∣zf ′(z)f(z) − 1
∣∣∣∣ ≤ r

2− r .

Proof. Since f ∈ Ω, we have

|zf ′(z)− f(z)| < 1
2 .

This can be equivalently written in the form

zf ′(z)− f(z) = 1
2z

2φ(z),

where φ ∈ H and |φ(z)| ≤ 1. This further implies that

|zf ′(z)− f(z)| ≤ 1
2 |z|

2.(18)

Inequality (18) along with (17) yields∣∣∣∣zf ′(z)f(z) − 1
∣∣∣∣ = 1
|f(z)| |zf

′(z)− f(z)| ≤
1
2 |z|

2

|z| − 1
2 |z|2

= r

2− r .

The sharpness of the estimate follows from Lemma 4.1. �

For brevity, we write

Qf (z) := zf ′(z)
f(z) , f ∈ A.(19)

Theorem 4.3. For the function class Ω given by (2), we have
(i) RS∗(α) (Ω) = ρα := 2(1− α)/(2− α), where 0 ≤ α < 1,
(ii) RSP

(Ω) = 2/3.
Both estimates are sharp.
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Proof. (i) To prove this part, we will use the fact that

|w(z)− 1| < 1− α =⇒ Re (w(z)) > α, z ∈ D.

Let f ∈ Ω and |z| = r < 1. Then from Lemma 4.2,

|Qf (z)− 1| ≤ r

2− r < 1− α,

provided r < (1 − α)(2 − r), or r < ρα. Thus, f(z) is starlike of order α in
|z| < ρα. For sharpness, consider the function L(z) := L1(z) ∈ Ω given by

L(z) := z + z2

2 .(20)

At the point z0 = −2(1− α)/(2− α) lying on the circle |z| = ρα, the function
L(z) satisfies

QL(z0) = z0L′(z0)
L(z0) = 1 + z0

1 + z0/2
= α.

This shows that the radius estimate ρα is sharp.
(ii) In this part we will make use of the following lemma proved by Shan-

mugam and Ravichandran [21].

Lemma 4.4 ([21, Lemma 1]). For 3/4 < a < 3, let

ra =
{
a− 1/2, 3/4 < a ≤ 3/2,√

2a− 2, 3/2 ≤ a < 3.

If |Qf (z)− a| < ra for all z ∈ D, then f ∈ SP .

Now, let f ∈ Ω and |z| = r < 1. Then Lemma 4.2 gives

|Qf (z)− 1| ≤ r/(2− r),

so that |Qf (z)− 1| < 1/2 if r/(2− r) < 1/2, or equivalently, if r < 2/3. There-
fore, from Lemma 4.4, it follows that f ∈ SP for |z| < 2/3. Since the function
L ∈ Ω given by (20) satisfies Re(QL(z)) = 1/2 for z = −2/3, the sharpness of
the estimate follows from the fact that for each f ∈ SP , Re(Qf (z)) > 1/2 (cf.
Rønning [19]). Figure 2 shows that the domain QL(|z| < 2/3) completely lies
inside the parabolic region RP given by (15) with their boundaries touching at
u = 1/2. �
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Figure 2. Sharpness of SP -radius for Ω.

For Qf (z) defined in (19), Ma and Minda [11] introduced a general method
of constructing the function classes S∗(ϕ) ⊂ S∗ as

S∗(ϕ) := {f ∈ A : Qf (z) ≺ ϕ(z)} ,

where the analytic function ϕ : D → C satisfies (i) ϕ(z) is univalent with
positive real part, (ii) ϕ(z) maps D onto a region that is starlike with respect
to ϕ(0) = 1, (iii) ϕ(D) is symmetric about the real axis, and (iv) ϕ′(0) >
0. Using this unified approach, several classes of starlike functions with nice
geometric properties have been introduced and studied in the recent past. In
the sequel, we mention some of the important Ma-Minda type classes along
with the prerequisite results and then solve the corresponding radii problems
for Ω in Theorem 4.10.

(1) S∗e : Mendiratta et al. [12] introduced the class S∗e associated with the
exponential function ez defined by

S∗e := {f ∈ A : Qf (z) ≺ ez} .

The authors in [12] verified that f ∈ S∗e if and only if Qf (z), z ∈ D, lies in the
region

Re := {w ∈ C : | logw| < 1} ,

and established the following result.

Lemma 4.5 ([12, Lemma 2.2]). For 1/e < a < e, let ra be given by

ra =
{
a− 1/e, 1/e < a ≤ (e+ e−1)/2,
e− a, (e+ e−1)/2 ≤ a < e.

Then {w ∈ C : |w − a| < ra} ⊂ Re.
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(2) S∗C : K. Sharma et al. [22] introduced and discussed the class
S∗C :=

{
f ∈ A : Qf (z) ≺ 1 + 4z/3 + 2z2/3

}
.

A function f ∈ A is in the class S∗C if and only if Qf (z) lies in the region
bounded by the cardiod

(
9u2 − 18u+ 9v2 + 5

)2−16
(
9u2 − 6u+ 9v2 + 1

)
= 0.

Let RC denotes the region bounded by this cardioid.

Lemma 4.6 ([22, Lemma 2.5]). For 1/3 < a < 3, let ra be given by

ra =
{

(3a− 1)/3, 1/3 < a ≤ 5/3,
3− a, 5/3 ≤ a < 3.

Then {w ∈ C : |w − a| < ra} ⊂ RC .

(3) S∗$: P. Sharma et al. [23] considered the class

S∗$ :=
{
f ∈ A : Qf (z) ≺ z +

√
1 + z2

}
.

The function ϕ$(z) = z +
√

1 + z2 maps D onto the crescent shaped region
R$ :=

{
w : |w2 − 1| < 2|w|, Re(w) > 0

}
.

Lemma 4.7 ([23, p. 1892]). The disk {w : |w − a| < r} lies inside the region
R$ if and only if |a−

√
2| ≤ 1− r.

(4) S∗S : Cho et al. [4] introduced another important class
S∗S := {f ∈ A : Qf (z) ≺ 1 + sin z} .

The function ϕS(z) = 1 + sin z maps D onto the interior of an eight-shaped
curve.

Lemma 4.8 ([4, Lemma 3.3]). Let 1 − sin 1 ≤ a ≤ 1 + sin 1 and ra = sin 1 −
|a− 1|. Then {w ∈ C : |w − a| < ra} ⊂ RS, where RS := ϕS(D).

(5) S∗SG: Very recently, Goel and Kumar [6] introduced
S∗SG :=

{
f ∈ A : Qf (z) ≺ 2/(1 + e−z)

}
.

The function ϕSG(z) = 2/(1 + e−z) is the modified sigmoid function which
maps D onto the region RSG := {w ∈ C : | log(w/(2− w))| < 1}.

Lemma 4.9 ([6, Lemma 2.2]). Let 2/(1 + e) < a < 2e/(1 + e). If

ra = e− 1
e+ 1 − |a− 1|,

then {w ∈ C : |w − a| < ra} ⊂ RSG.

We now go for the main theorem.

Theorem 4.10. For the function class Ω, we have the following radii results:
(1) RS∗

e
(Ω) = ρe := 1− 1/(2e− 1) ≈ 0.7746.

(2) RS∗
C

(Ω) = 4/5.
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(3) RS∗
$

(Ω) = ρ$ := 4/(4 +
√

2) ≈ 0.738796.
(4) RS∗

S
(Ω) = ρS := 2 sin 1/(1 + sin 1) ≈ 0.913912.

(5) RS∗
SG

(Ω) = (e− 1)/e ≈ 0.632121.

All estimates are sharp.

Proof. (1) Let f ∈ Ω. Then, for |z| = r < 1, Lemma 4.2 gives

|Qf (z)− 1| ≤ r/(2− r),(21)

which represents a disk centered at (1, 0) and radius r/(2− r). Now it follows
from Lemma 4.5 that the disk (21) is contained in the region Re provided

r/(2− r) ≤ 1− 1/e, or r ≤ ρe.

For sharpness of the radius estimate ρe, consider the function L(z) given by
(20). It is easy to verify that QL(z) takes the value 1/e ∈ ∂Re (the boundary
of Re) at the point z = −ρe lying on the boundary of |z| < ρe. This shows
that the estimate is best possible.

(2) In view of Lemma 4.2 and Lemma 4.6, it follows that for any f ∈ Ω, the
disk (21) will lie inside the region RC if and only if r/(2−r) ≤ 2/3, or r ≤ 4/5.
Again, from Lemma 4.6, it is easy to verify that the largest disk with center at
(1, 0) and lying completely inside RC is {w : |w − 1| < 2/3}. Clearly the left
diametric end point of this disk is 1/3. The sharpness of our result will follow
if we can find at least one function f ∈ Ω and a point z0 on the circle |z| = 4/5
such that the value of Qf (z0) is 1/3. We see that one such function in Ω is
L(z) given by (20) and the corresponding point is z0 = −4/5. See Figure 3 for
graphical illustration.

Figure 3. Sharpness of S∗C-radius for Ω.
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(3) Let f ∈ Ω. Then, in view of Lemma 4.7, the disk (21) lies inside the
region R$ if and only if∣∣∣1−√2

∣∣∣ ≤ 1− r(2− r) ⇐⇒ r ≤ 4/(4 +
√

2) = ρ$.

The result is sharp for the function L ∈ Ω given by (20), as QL(z) attains the
value

√
2− 1 ∈ ∂R$ at the point z = −ρ$, see Figure 4.

Figure 4. Sharpness of S∗$-radius for Ω.

(4) It is obvious from Lemma 4.8 that the disk (21) will completely lie
inside the region RS provided r/(2 − r) ≤ sin 1, which further gives r ≤ ρS .
Verification of sharpness of the estimate ρS for the function L ∈ Ω is easy.

(5) Let f ∈ Ω. Then Lemma 4.2 shows that the inequality (21) holds for
|z| = r < 1. In view of Lemma 4.9, the disk (21) lies completely in the interior
of the region RSG if

r

2− r ≤
e− 1
e+ 1 .

The above inequality on simplification yields r ≤ (e− 1)/e. For the function
L(z) given by (20), we have

QL
(

1− e
e

)
= 2

1 + e
∈ ∂RSG.

Thus the estimate is best possible. This completes the proof of the theorem. �

We finish this paper by presenting a justified open problem related to the
convolution of members of Ω. This problem carries its significance due to the
celebrated Pólya-Schoenberg Theorem [20].

Problem. Let f1, f2 ∈ Ω. Then f1 ∗ f2 ∈ C, i.e., the convolution of two
members of Ω is a convex function.
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Justification. Consider the function L(z) = z+ z2/2 ∈ Ω playing a central role
in Ω, as far as its extremal behaviour is concerned. The convolution of L(z)
with itself is the function

g(z) = (L ∗ L)(z) = z + z2

4 .

The function g(z) satisfies
∞∑
n=2

n(n− 1)|an| = 2
(

1
4

)
= 1

2 .

Applying the result of Kanas and Wisniowska [9, Corollary 3.2], it follows that
g ∈ C.
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[15] M. Obradović and Z. Peng, Some new results for certain classes of univalent functions,
Bull. Malays. Math. Sci. Soc. 41 (2018), no. 3, 1623–1628. https://doi.org/10.1007/
s40840-017-0546-0
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[23] P. Sharma, R. K. Raina, and J. Sokó l, Certain Ma-Minda type classes of analytic func-
tions associated with the crescent-shaped region, Anal. Math. Phys. 9 (2019), no. 4,
1887–1903. https://doi.org/10.1007/s13324-019-00285-y

Anbhu Swaminathan
Department of Mathematics
Indian Institute of Technology Roorkee
Roorkee-247667, Uttarakhand, India
Email address: mathswami@gmail.com

Lateef Ahmad Wani
Department of Mathematics
Indian Institute of Technology Roorkee
Roorkee-247667, Uttarakhand, India
Email address: lateef17304@gmail.com

https://doi.org/10.1007/s40840-017-0546-0
https://doi.org/10.1007/s40840-017-0546-0
https://doi.org/10.1007/s10473-019-0609-4
https://doi.org/10.1007/s10473-019-0609-4
https://doi.org/10.1016/S0252-9602(16)30116-3
https://doi.org/10.2307/2160026
https://doi.org/10.1007/BF02566116
https://doi.org/10.1007/BF02566116
https://doi.org/10.1007/s13370-015-0387-7
https://doi.org/10.1007/s13370-015-0387-7
https://doi.org/10.1007/s13324-019-00285-y

