• Title/Summary/Keyword: uniform resistivity

Search Result 108, Processing Time 0.024 seconds

Analysis of the TE Scattering by a Resistive Strip Grating Over a Grounded Dielectric Plane (접지된 유전체 평면위의 저항띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 2006
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating on a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of dielectric layer, and incident angles of a TE plane wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The induced surface current density is simply expanded in a Fourier series by using the exponential function as a simple function. The reflected power gets increased according as the relative permittivity and thickness of dielectric multilayers gets increased, the sharp variations of the reflected power are due to resonance effects were previously called wood's anomallies[7]. To verify the validity of the proposed method, the numerical results of normalized reflected power for the uniform resistivity R = 0 as a conductive strip case show in good agreement with those in the existing paper.

  • PDF

Development of Backfill Materials for Underground Power Cables Considering Thermal Effect (열특성 효과를 고려한 지중송전관로용 되메움재 개발)

  • Lee Dae-Soo;Kim Dae-Hong;Hong Sung-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.41-52
    • /
    • 2005
  • Because the allowable current loading of buried electrical transmission cables is frequently limited by the maximum permissible temperature of the cable or of the surrounding ground, there is a need fur cable backfill materials that can maintain a low thermal resistivity even while subjected to high temperatures for prolonged periods. Temperatures greater than $50^{\circ}C\;to\;60^{\circ}C$ may lead to breakdown of cable insulation and thermal runaway if the surrounding backfill material is unable to dissipate the heat as rapidly as it is generated. This paper describes the results of studies aimed at the development of backfill material to reduce the thermal resistivity. A large number of different additive materials were tested to determine their applicability as a substitute material. Tests were carried out for Dongrim river sand, a relatively uniform sand of very high thermal resistivity, $50^{\circ}C-cm/watt\;at\;10\%$ water content, $260^{\circ}C-cnuwatt$ when dry, and Jinsan granite screenings, and D-2 (sand and granite screenings mixture), E-1 (rubble and granite screenings mixture), a well-graded materials with low thermal resistivity, about $35^{\circ}C-cm/watt$ when at 10 percent water content, $100^{\circ}C-cm/watt$ when dry. Based on this research, 3 types of backfill materials were suggested for improved materials with low thermal resistivity and the applicability was assessed through field tests.

Effects of Co Thickness on the Formation of Epitaxial CoSi2 Thin Film (Co 두께가 $CoSi_2$ 에피박막 형성에 미치는 영향)

  • 김종렬;배규식
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.1
    • /
    • pp.23-29
    • /
    • 1997
  • Effects of Co thickness on the formation of epitaxial $CoSi_2$ from the Co/Ti bilayer have been investigated. Ti and Co were sequentially deposited with the Ti thickness fixed at 5 or 10nm, while the Co thickness was varied from 5 to 30nm. The metal-deposited samples were then rapidly thermal-annealed in $N_2$ at $900^{\circ}C$ for 20 sec. Material properties of $CoSi_2$ thin films were analyzed by the 4-point probe, XRD, AES, andXTEM. When the as-deposited Co thickness was below 15nm, the $CoSi_2$ with high resistivity and rough interface was formed. On the other hand, when the Co thickness was above 15 nm, the epitaxial $CoSi_2$ with the resistivity of about 16 ~ 19 $\mu\Omega.cm$, uniform composition and thickness and flat interface was formed. Initial Ti thickness has sizable effect on the formation of $CoSi_2$, when the Co layer was very thin (~ 5 nm). But there was no significant effect of the Ti thickness for the initial Co thickness of above 15 nm.

  • PDF

Properties of Aluminum Doped Zinc Oxide Thin Film Prepared by Sol-gel Process

  • Yi, Sung-Hak;Kim, Jin-Yeol;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.351-355
    • /
    • 2010
  • Transparent conducting aluminum-doped ZnO thin films were deposited using a sol-gel process. In this study, the important deposition parameters were investigated thoroughly to determine the appropriate procedures to grow large area thin films with low resistivity and high transparency at low cost for device applications. The doping concentration of aluminum was adjusted in a range from 1 to 4 mol% by controlling the precursor concentration. The annealing temperatures for the pre-heat treatment and post-heat treatment was $250^{\circ}C$ and 400-$600^{\circ}C$, respectively. The SEM images show that Al doped and undoped ZnO films were quite uniform and compact. The XRD pattern shows that the Al doped ZnO film has poorer crystallinity than the undoped films. The crystal quality of Al doped ZnO films was improved with an increase of the annealing temperature to $600^{\circ}C$. Although the structure of the aluminum doped ZnO films did not have a preferred orientation along the (002) plane, these films had high transmittance (> 87%) in the visible region. The absorption edge was observed at approximately 370 nm, and the absorption wavelength showed a blue-shift with increasing doping concentration. The ZnO films annealed at $500^{\circ}C$ showed the lowest resistivity at 1 mol% Al doping.

Thick Metal CMOS Technology on High Resistivity Substrate and Its Application to Monolithic L-band CMOS LNAs

  • Kim, Cheon-Soo;Park, Min;Kim, Chung-Hwan;Yu, Hyun-Kyu;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • Thick metal 0.8${\mu}m$ CMOS technology on high resistivity substrate(RF CMOS technology) is demonstrated for the L-band RF IC applications, and we successfully implemented it to the monolithic 900 MHz and 1.9 GHz CMOS LNAs for the first time. To enhance the performance of the RF circuits, MOSFET layout was optimized for high frequency operation and inductor quality was improved by modifying the technology. The fabricated 1.9 GHz LNA shows a gain of 15.2 dB and a NF of 2.8 dB at DC consumption current of 15mA that is an excellent noise performance compared with the offchip matched 1.9 GHz CMOS LNAs. The 900 MHz LNA shows a high gain of 19 dB and NF of 3.2 dB despite of the performance degradation due to the integrating of a 26 nH inductor for input match. The proposed RF CMOS technology is a compatibel process for analog CMOS ICs, and the monolithic LNAs employing the technology show a good and uniform RF performance in a five inch wafer.

  • PDF

Nondestructive Damage Sensitivity for Functionalized Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Acoustic Emission (전기저항 측정과 음향방출을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.42-45
    • /
    • 2003
  • Nondestructive damage sensing and mechanical properties for acid-treated carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites were investigated using electro-micromechanical technique and acoustic emission (AE). Carbon black (CB) was used to compare to CNT and CNF. The results were compared to the untreated case. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity under double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. For surface treatment case, the damage sensitivity and reinforcing effect were higher than those of the untreated case. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Characteristics of Sputtering Mo Doped Carbon Films and the Application as the Gate Electrode in Organic Thin Film Transistor (스퍼터링 Mo 도핑 탄소박막의 특성과 유기박막트랜지스터의 게이트 전극으로 응용)

  • Kim, Young Gon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.23-26
    • /
    • 2017
  • Mo doped carbon (C:Mo) thin films were fabricated with various Mo target power densities by unbalanced magnetron sputtering (UBM). The effects of target power density on the surface, structural, and electrical properties of C:Mo films were investigated. UBM sputtered C:Mo thin films exhibited smooth and uniform surfaces. However, the rms surface roughness of C:Mo films were increased with the increase of target power density. Also, the resistivity value of C:Mo film as electrical properties was decreased with the increase of target power density. From the performance of organic thin filml transistor using conductive C:Mo gate electrode, the carrier mobility, threshold voltage, and on/off ratio of drain current (Ion/Ioff) showed $0.16cm^2/V{\cdot}s$, -6.0 V, and $7.7{\times}10^4$, respectively.

Improvement of Substrate and Insulationg Layer of FM Magnetic Tunneling Jundtion and the Study of Magnetic Transport (기판과 부도체층을 개선한 $FM/Al_2O_3/FM$ (FM=Ferromagnet) 자기터널링 접합제작 및 자기수송에 관한 연구)

  • 변상진;박병기;장인우;염민수;이재형;이긍원
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.245-250
    • /
    • 1999
  • The effect of substrate and oxidization time on $substrate /Py/Al_2O_3/Co\;(Py=Ni_{81}Fe_{19})$ tunnel junction was studied. Samples were prepared without breaking vacuum by changing shadow masks in-situ. The resistance of tunnel junctions increased, but measured MR decreased with oxidization time. Negative MR observed for samples of tunnel resistivity lower than 0.17 M$\Omega$ $({\mu}m)^2$. MR resistivity decreased with the change of substrates in the order of thermally oxidized Si(111), Si(100), Coring Glass 2948, Corning Glass 7059. Sign change and the variation of MR was explained with non uniform current effect.

  • PDF

A Relationship between Hydraulic Conductivity and Electrical Properties of Silty Sand on the Riverside of the Nakdong River (낙동강변 실트질 모래의 수리전도도와 전기적 물성과의 관계)

  • Kim, Soo-Dong;Park, Samgyu;Hamm, Se-Yeong;Oh, Yun-Yeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.39-46
    • /
    • 2014
  • Hydraulic conductivity is an important parameter, representing permeable property of the groundwater in aquifers, in the issues of groundwater development, groundwater contamination, and groundwater flow, etc. We estimated a relationship between hydraulic conductivity and electrical properties (formation factor, chargeability, and time constant) of silty sand in the laboratory. For this study, we conducted grain size analysis, constant head permeameter test, and measured electrical resistivity and spectral induced polarization of silty sand samples collected from the riverside alluvium of the Nakdong River in Nogok-ri area, Dasan-myeon, Goryeong-gun in Gyeongbook Province, Korea. In the laboratory test, we used soil samples of approximately uniform porosity with 0.5% error range, and kept the electrical resistivity of pore water with 100 ohm-m. As a result, the relationship between effective particle size and hydraulic conductivity agrees fairly well with the existing empirical formulas. Hydraulic conductivity was correlated with formation factor, chargeability, and time constant: hydraulic conductivity increased with increasing formation factor and time constant as well as with decreasing chargeability.

Changes in Structural, Electrical, and Optical Properties Depending on the Thickness of AZO Thin Films Deposited with FTS (FTS로 증착된 AZO 박막의 두께에 따른 구조적, 전기적, 광학적 특성 변화)

  • Haechan Kim;Hyungmin Kim;Seongmin Shin;Kyunghwan Kim;Jeongsoo Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.169-174
    • /
    • 2024
  • In this study, the structural, electrical, and optical properties of AZO films of various thicknesses are compared. The AZO films were deposited on a glass substrate by FTS (Facing-Target-Sputtering) This research was conducted to find the optimal thickness for Transparent Conductive Oxide (TCO). AZO has suitable properties for TCO such as low resistivity, and high transmittance. Thin films of all thicknesses showed a transmittance of over 80% in the visible light region and electrical properties improved as thickness increased. It was confirmed that the film of 300 nm thick had the best performance due to its low resistivity, and uniform surface. This research is expected to help find optimal conditions in various fields where TCO is used, such as solar cells, displays, and sensors in the future.