Browse > Article
http://dx.doi.org/10.3740/MRSK.2010.20.7.351

Properties of Aluminum Doped Zinc Oxide Thin Film Prepared by Sol-gel Process  

Yi, Sung-Hak (School of Advanced Materials Engineering, Kookmin University Seoul)
Kim, Jin-Yeol (School of Advanced Materials Engineering, Kookmin University Seoul)
Jung, Woo-Gwang (School of Advanced Materials Engineering, Kookmin University Seoul)
Publication Information
Korean Journal of Materials Research / v.20, no.7, 2010 , pp. 351-355 More about this Journal
Abstract
Transparent conducting aluminum-doped ZnO thin films were deposited using a sol-gel process. In this study, the important deposition parameters were investigated thoroughly to determine the appropriate procedures to grow large area thin films with low resistivity and high transparency at low cost for device applications. The doping concentration of aluminum was adjusted in a range from 1 to 4 mol% by controlling the precursor concentration. The annealing temperatures for the pre-heat treatment and post-heat treatment was $250^{\circ}C$ and 400-$600^{\circ}C$, respectively. The SEM images show that Al doped and undoped ZnO films were quite uniform and compact. The XRD pattern shows that the Al doped ZnO film has poorer crystallinity than the undoped films. The crystal quality of Al doped ZnO films was improved with an increase of the annealing temperature to $600^{\circ}C$. Although the structure of the aluminum doped ZnO films did not have a preferred orientation along the (002) plane, these films had high transmittance (> 87%) in the visible region. The absorption edge was observed at approximately 370 nm, and the absorption wavelength showed a blue-shift with increasing doping concentration. The ZnO films annealed at $500^{\circ}C$ showed the lowest resistivity at 1 mol% Al doping.
Keywords
ZnO thin film; Al doping; sol-gel; transmittance; electric conductivity; transparent conducting oxide film;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 A. El-Shaer, A. Che Mofor, A. Bakin, M. Kreye and A. Waag, Superlattice Microst., 38, 265 (2005).   DOI   ScienceOn
2 Y. J. Cho, A. Park and C. Lee, Kor. J. Mat. Res., 16(7), 445 (2006) (in Korean).   DOI   ScienceOn
3 A. W. Ott and R. P. H. Chang, Mater. Chem. Phys., 58, 132 (1999).   DOI   ScienceOn
4 R. Kaur, A. V. Singh and R. M. Mehra, J. Non-Cryst. Solids, 352, 2335 (2006).   DOI   ScienceOn
5 Z. Q. Xu, H. Deng, Y. Li, H. Cheng, Mater. Sci. Semicond. Process., 9, 132 (2006).   DOI   ScienceOn
6 M. J. Alam and D. C. Cameron, J. Vac. Sci. Technol. A, 19, 1642 (2001).   DOI   ScienceOn
7 B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg and C. G. Granqvist, Phys. Rev. B, 37, 10244 (1988).
8 J. B. Baxter and E. S. Aydil, App. Phy. Lett., 86, 053114-1-3 (2005).   DOI   ScienceOn
9 N. Saito, H. Haneda, T. Sekiguchi, N Ohashi, I. Sakaguchi and K. Koumoto, Adv. Mater., 6, 418 (2002).
10 S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, J. Cryst. Growth, 225, 110 (2001).   DOI   ScienceOn
11 J. Y. Lee, Y. S. Choi, J. H. Kim, M. O. Park and S. Im, Thin Solid Films, 403-404, 553 (2002).   DOI   ScienceOn
12 G. G. Valle, P. Hammer, S. H. Pulcinell and C. V. Sanrilli, J. Eur. Ceram. Soc., 24, 1009 (2004).   DOI   ScienceOn
13 T. J. Hsueh, C. L. Hsu, S. J. Chang, P. W. Guo, J. H. Hsieh and I. C. Chen, Scripta Materialia, 57, 53 (2007).   DOI   ScienceOn
14 G. Alvarez, J. J. Flores, J. O. Aguilar, O.Gomez-Daza, C. A. Estrada, M. T. S. Nair and P. K. Nail, Solar Energy, 78, 113 (2005).   DOI   ScienceOn
15 A. E. Morales, M. H. Zaldivar, U. Pal, Optical Materials, 29, 100 (2006).   DOI   ScienceOn
16 H. Gomez, A. Maldonado and D. R. Acosta, Sol. Energ. Mater. Sol. Cell., 87, 107 (2005).   DOI   ScienceOn
17 J. H. Choi, H. Tabata and T. J. Kawai, J. Cryst. Growth, 226, 493 (2001).   DOI   ScienceOn
18 S. J. Tark, M. G. Kang and D. Kim, Kor. J. Mat. Res., 16(7), 449, (2006) (in Korean).   DOI   ScienceOn