DOI QR코드

DOI QR Code

Characteristics of Sputtering Mo Doped Carbon Films and the Application as the Gate Electrode in Organic Thin Film Transistor

스퍼터링 Mo 도핑 탄소박막의 특성과 유기박막트랜지스터의 게이트 전극으로 응용

  • Kim, Young Gon (Department of Electronics, Chosun College of Science and Technology) ;
  • Park, Yong Seob (Department of Electronics, Chosun College of Science and Technology)
  • Received : 2016.11.14
  • Accepted : 2016.11.23
  • Published : 2017.01.01

Abstract

Mo doped carbon (C:Mo) thin films were fabricated with various Mo target power densities by unbalanced magnetron sputtering (UBM). The effects of target power density on the surface, structural, and electrical properties of C:Mo films were investigated. UBM sputtered C:Mo thin films exhibited smooth and uniform surfaces. However, the rms surface roughness of C:Mo films were increased with the increase of target power density. Also, the resistivity value of C:Mo film as electrical properties was decreased with the increase of target power density. From the performance of organic thin filml transistor using conductive C:Mo gate electrode, the carrier mobility, threshold voltage, and on/off ratio of drain current (Ion/Ioff) showed $0.16cm^2/V{\cdot}s$, -6.0 V, and $7.7{\times}10^4$, respectively.

Keywords

References

  1. M. Vilkman, T. Ruotsalainen, K. Solehmainen, E. Jansson, and J. H. Keinanen, Electronics, 5, 1 (2016). [DOI: 10.3390/electronics5010002]
  2. F. F. Vidor, T. Meyers, and U. Hilleringmann, Electronics, 4, 480 (2015). [DOI: https://doi.org/10.3390/electronics4030480]
  3. I. H. Campbell, P. S. Davids, J. P. Ferraris, T. W. Haglar, C. M. Heller, A. Saxena, and D. L. Smith, Synthetic Metals, 80, 105 (1996). [DOI: https://doi.org/10.1016/S0379-6779(96)03689-2]
  4. N. R. Tu and C. Kao, J. Appl. Phys., 85, 7267 (1999). [DOI: https://doi.org/10.1063/1.370543]
  5. W. A. Schoonveld, J. Vrijmoeth, and T. M. Klapwijk, Appl. Phys. Lett., 73, 3884 (1998). [DOI: https://doi.org/10.1063/1.122924]
  6. C. M. Hwller, I. H. Campbell, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, J. Appl. Phys., 81, 3227 (1997). [DOI: https://doi.org/10.1063/1.364154]
  7. J. H. Schoen, Ch. Kloc, T. Siegrist, J. Laquindanum, and H. E. Katz, Organic Electronics, 2, 165 (2001). [DOI: https://doi.org/10.1016/S1566-1199(01)00022-2]
  8. J. H. Schoen, Ch. Kloc, and B. Batlogg, Synthetic Metals, 115, 75, (2000). [DOI: https://doi.org/10.1016/S0379-6779(00)00348-9]
  9. J. Robertson, Mater. Sci. Eng., R37, 129 (2002). [DOI: https://doi.org/10.1016/S0927-796X(02)00005-0]
  10. H. Dimigen, H. Hubsch, and R. Memming, Appl. Phys. Lett., 50, 1056 (1987). [DOI: https://doi.org/10.1063/1.97968]
  11. K. Bewilogua, C. V. Cooper, C. Specht, J. Schroder, R. Wittorf, and M. Grischke, Surf. Coat. Technol., 127, 224 (2000). [DOI: https://doi.org/10.1016/S0257-8972(00)00666-6]
  12. V. Kulikovsky, P. Bohac, F. Franc, A. Deineka, V. Vorlicek, and L. Jastrabik, Diamond and Relat. Mater., 10, 1076 (2001). [DOI: https://doi.org/10.1016/S0925-9635(00)00525-2]
  13. A. Grill, Surf. Coat. Technol., 94, 507 (1997). [DOI: https://doi.org/10.1016/S0257-8972(97)00458-1]
  14. A. Czyzniewski, Thin Solid Films, 433, 180 (2003). [DOI: https://doi.org/10.1016/S0040-6090(03)00324-9]
  15. G. Horowitz, Adv. Mater., 10, 365 (1998). [DOI: https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U]